×

On functions with conditions on the mean oscillation. (English) Zbl 0341.43005


MSC:

43A22 Homomorphisms and multipliers of function spaces on groups, semigroups, etc.
42A45 Multipliers in one variable harmonic analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Calderón, A. P., Zygmund, A., On the existence of certain singular integrals.Acta Math. 88 (1952), 85–139. · Zbl 0047.10201
[2] Campanato, S., Proprietà di hölderianità di alcune classi di funzioni.Ann. Scuola Norm. Sup. Pisa 17 (1963), 175–188. · Zbl 0121.29201
[3] Fefferman, C. L., Characterizations of bounded mean oscillation.Bull. Amer. Math. Soc. 77 (1971), 587–588. · Zbl 0229.46051
[4] Fefferman, C. L., Stein, E. M.,H p -spaces of several variables.Acta Math. 129 (1972), 137–193. · Zbl 0257.46078
[5] John, F., Nirenberg, L., On functions of bounded mean oscillation.Comm. Pure Appl. Math. 14 (1961), 415–426. · Zbl 0102.04302
[6] Katznelson, Y.,An Introduction to Harmonic Analysis. Wiley 1968. · Zbl 0169.17902
[7] Meyers, N. G., Mean oscillation over cubes and Hölder continuity.Proc. Amer. Math. Soc. 15 (1964), 717–721. · Zbl 0129.04002
[8] Neri, U., Fractional integration on the spaceH 1 and its dual.Studia Math. 53 (1975), 175–189. · Zbl 0269.44012
[9] Peetre, J., On convolution operators leavingL p, {\(\lambda\)} -spaces invariant.Ann. Mat. Pura Appl. 72 (1966), 295–304. · Zbl 0149.09102
[10] Peetre, J., On the theory ofL p, {\(\lambda\)} -spaces.J. Functional Analysis 4 (1969), 71–87. · Zbl 0175.42602
[11] Sarason, D., Algebras of functions on the unit circle.Bull. Amer. Math. Soc. 79 (1973), 286–299. · Zbl 0257.46079
[12] Sarason, D., Functions of vanishing mean oscillation.Trans. Amer. Math. Soc. 207 (1975), 391–405. · Zbl 0319.42006
[13] Spanne, S., Some function spaces defined using the mean oscillation over cubes.Ann. Scuola Norm. Sup. Pisa 19 (1965), 593–608. · Zbl 0199.44303
[14] Stein, E. M.,Singular integrals and differentiability properties of functions. Princeton 1970. · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.