×

zbMATH — the first resource for mathematics

The Radon-Nikodym theorem for Lebesgue-Bochner function spaces. (English) Zbl 0341.46019

MSC:
46B99 Normed linear spaces and Banach spaces; Banach lattices
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E40 Spaces of vector- and operator-valued functions
46G10 Vector-valued measures and integration
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bessaga, C; Pelczynski, A, On bases and unconditional convergence of series in Banach spaces, Studia math., 17, 151-164, (1958) · Zbl 0084.09805
[2] Day, M.M, Normed linear spaces, (1973), Springer-Verlag New York · Zbl 0268.46013
[3] Dunford, N; Schwartz, J.T, Linear operators, (1958), Interscience New York
[4] Hoffman-Jørgensen, J, Sums of independent Banach space valued random variables, Studia math., 52, 159-186, (1974) · Zbl 0265.60005
[5] Krasnoselskii, M.A; Rutickii, Ya.B, Convex functions and Orlicz spaces, (1961), Noordhoff Groningen, The Netherlands
[6] Kwapien, S, On Banach spaces containing C0, Studia math., 52, 187-188, (1976) · Zbl 0295.60003
[7] Morrsion, T.J, (), to appear
[8] Paley, R.E.A.C, A remarkable series of orthogonal functions I, (), 241-264 · Zbl 0005.24806
[9] Phelps, R.R, Dentability and extreme points in Banach spaces, J. functional analysis, 17, 78-90, (1974) · Zbl 0287.46026
[10] Rieffel, M.A, The Radon-Nikodym theorem for Bochner-integrals, Trans. amer. math. soc., 13, 466-487, (1968) · Zbl 0169.46803
[11] Sundaresan, K, Banach lattices of Lebesgue-Bochner function spaces and conditional expectation operators-I, Bull. inst. math. academia sinica, 2, 165-184, (1974) · Zbl 0307.46025
[12] Vulikh, B.Z, Introduction to the theory of partially ordered spaces, (1967), Wolters-Noordhoff Groningen, The Netherlands · Zbl 0186.44601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.