×

zbMATH — the first resource for mathematics

Curvatures of left invariant metrics on Lie groups. (English) Zbl 0341.53030

MSC:
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
22E99 Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Azencott, R.; Wilson, E., Homogeneous manifolds with negative curvature, part I, Trans. amer. math. soc., 215, 323-362, (1976) · Zbl 0293.53017
[2] Bishop, R.L.; Crittenden, R.J., Geometry of manifolds, (1964), Academic Press New York/Berlin · Zbl 0132.16003
[3] Chevalley, C., Theory of Lie groups, (1946), Princeton University Press New York · Zbl 0063.00842
[4] Dolgačev, I.V.; Dolgačev, I.V., Conic quotient singularities of complex surfaces, (), Funct. anal. appl., 9, 2, 149-151, (1975), See also
[5] Eliasson, H.I., On variations of metrics, Math. scand., 29, 317-327, (1971) · Zbl 0238.53024
[6] Heintze, E., On homogeneous manifolds of negative curvature, Math. ann., 211, 23-34, (1974) · Zbl 0273.53042
[7] Helgason, S., Differential geometry and symmetric spaces, (1962), Academic Press Princeton, N.J. · Zbl 0122.39901
[8] Hitchin, N., Harmonic spinors, Advances in math, 14, 1-55, (1974) · Zbl 0284.58016
[9] Iwasawa, K., On some types of topological groups, Ann. math., 50, 507-558, (1949) · Zbl 0034.01803
[10] Kazdan, J.L.; Warner, F.W., Scalar curvature and conformal deformation of Riemannian structure, J. diff. geom., 10, 113-134, (1975) · Zbl 0296.53037
[11] Kobayashi, S.; Nomizu, K., ()
[12] Lawson, H.B.; Yau, S.T., Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres, Comment. math. helv., 49, 232-244, (1974) · Zbl 0297.57016
[13] Lichnerowicz, A., Spineurs harmoniques, C. R. acad. sci. Paris, 257, 7-9, (1963) · Zbl 0136.18401
[14] Milnor, J., Morse theory, ()
[15] Milnor, J., On the 3-dimensional Brieskorn manifolds M (p, q, r), (), 175-225
[16] {\scF. Raymond and A. Vasquez}, Closed 3-manifolds whose universal covering is a Lie group, (to appear).
[17] Varadarajan, V.S., Lie algebras, and their representations, (1974), Prentice-Hall Princeton, N.J. · Zbl 0371.22001
[18] Wagreich, P., Singularities of complex surfaces with solvable local fundamental group, Topology, 11, 51-72, (1972) · Zbl 0204.56404
[19] Wallach, N., Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. math., 96, 277-295, (1972) · Zbl 0261.53033
[20] Warner, F., Foundations of differentiable manifolds and Lie groups, (1971), Scott-Foresman New York · Zbl 0241.58001
[21] Wolf, J., Curvature in nilpotent Lie groups, (), 271-274 · Zbl 0134.17905
[22] Wolf, J., Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. diff. geom., 2, 421-446, (1968), (See Sections 5, 6.) · Zbl 0207.51803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.