zbMATH — the first resource for mathematics

Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of a plasma. (English) Zbl 0341.65044

65J05 General theory of numerical analysis in abstract spaces
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI EuDML
[1] Appert, K., Berger, D., Gruber, R., Rappaz, J., Troyon, F.: Studium der Eigenschwingungen eines zylindrischen Plasmas mit der Methode der finiten Elemente. ZAMP25, 229-340 (1974) · Zbl 0282.76088 · doi:10.1007/BF01591323
[2] Appert, K., Berger, D., Gruber, R., Rappaz, J.: A new finite element approach to the normal mode analysis in magnetohydrocdynamics. Comput. Phys.18, 284-299 (1975) · Zbl 0319.76038 · doi:10.1016/0021-9991(75)90003-0
[3] Babuska, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method (A.K. Aziz, ed.). New York-London: Academic Press 1972
[4] Bramble, J.H., Osborn, J.E.: Rate of convergence estimates for non-selfadjoint eigenvalue approximations. MCR Tech. Sum. Rep. 1232, June 1972 · Zbl 0305.65064
[5] Bramble, J.H., Osborn, J.E.: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operator (A.K. Aziz, ed.). New York-London: Academic Press 1972 · Zbl 0264.35055
[6] Chatelin, F.: Convergence of approximation methods to compute eigenelements of linear operations. SIAM J. Numer. Anal.10, No. 5, 939-948 (1973) · Zbl 0266.65048 · doi:10.1137/0710080
[7] Gruber, R.: Numerical computations of the magnetohydrodynamic spectrum for one and two dimensional equilibria using regular finite elements and finite hybrid elements. Thèse EPFL, Département de physique, April 1976
[8] Kato, T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0148.12601
[9] Rappaz, J.: Approximation par la méthode des éléments finis du spectre d’un opérateur non compact donné par la stabilité magnétohydrodynamique d’un plasma. Thèse EPFL, Département de Mathématiques, avril 1976
[10] Riesz, F., Nagy, B.S.Z.: Leçon d’analyse fonctionelle, 6e ed. Budapest: Gauthier-Villars 1972
[11] Strang, G., Fix, G.J.: An analysis of the finite element method. Englewood Cliffs, N.J.: Prentice-Hall 1973 · Zbl 0356.65096
[12] Yosida, K.: Functional analysis. Berlin-Heidelberg-New York: Springer 1965 · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.