# zbMATH — the first resource for mathematics

Reciprocity theorems for Dedekind sums and generalizations. (English) Zbl 0342.10014
This work is concerned with various types of Dedekind sums involving the first Bernoulli function only, i.e., $$((x))$$ in the customary notation. All of the Dedekind sums examined here occur in the transformation formulae of functions akin to the logarithm of the Dedekind eta-function. Reciprocity and three-term relations are established for the sums. The methods are analytic, but transformation formulae are not used. Most of the theorems are not new. However, in some cases, the only previously known proofs utilized transformation formulas. Furthermore, the proofs given here are frequently simpler and shorter than other proofs.
Reviewer: Bruce C. Berndt
Show Scanned Page ##### MSC:
 11F20 Dedekind eta function, Dedekind sums 11B68 Bernoulli and Euler numbers and polynomials
##### Keywords:
Dedekind sums; reciprocity relations; three-term relations
Full Text:
##### References:
  Ayoub, R., An introduction to the analytic theory of numbers, (1963), American Mathematical Society Chicago, Ill. · Zbl 0128.04303  Berndt, B.C., Generalized Dedekind eta-functions and generalized Dedekind sums, Trans. amer. math. soc., 178, 495-508, (1973) · Zbl 0262.10015  Berndt, B.C., Character transformation formulae similar to those for the Dedekind eta-function, (), 9-30, No. 24  Berndt, B.C., Generalized Eisenstein series and modified Dedekind sums, J. reine angew. math., 272, 182-193, (1975) · Zbl 0294.10018  Berndt, B.C., A new proof of the reciprocity theorem for Dedekind sums, Elem. math., 29, 93-94, (1974) · Zbl 0283.10010  Berndt, B.C., On Eisenstein series with characters and the values of Dirichlet L-functions, Acta arith., 28, 299-320, (1975) · Zbl 0279.10023  Berndt, B.C., Dedekind sums and a paper of G. H. Hardy, J. London math. soc., 13, 2, 129-137, (1976) · Zbl 0319.10006  Berndt, B.C.; Schoenfeld, L., Periodic analogues of the Euler-Maclaurin and Poisson summation formulas with applications to number theory, Acta arith., 28, 23-68, (1975) · Zbl 0268.10008  Carlitz, L., A note on generalized Dedekind sums, Duke math. J., 21, 399-403, (1954) · Zbl 0057.03802  Carlitz, L., A further note on Dedekind sums, Duke math. J., 23, 219-223, (1956) · Zbl 0074.03504  Carlitz, L., Generalized Dedekind sums, Math. Z., 85, 83-90, (1964) · Zbl 0122.05104  Carlitz, L., A theorem on generalized Dedekind sums, Acta arith., 11, 253-260, (1965) · Zbl 0131.28801  Carlitz, L., Linear relations among generalized Dedekind sums, J. reine angew. math., 220, 154-162, (1965) · Zbl 0148.27305  Carlitz, L., A three-term relation for the Dedekind-Rademacher sums, Publ. math. debrecen, 14, 119-124, (1967) · Zbl 0167.31403  Dieter, U., Beziehungen zwischen dedekindschen summen, Abh. math. sem. univ. Hamburg, 21, 109-125, (1957) · Zbl 0078.07002  Dieter, U., Das verhalten der kleinschen funktionen log σ_{g, h}(w1, w2) gegenüber modultransformationen und verallgemeinerte dedekindsche summen, J. reine angew. math., 201, 37-70, (1959) · Zbl 0085.02604  Grosswald, E., Dedekind-Rademacher sums, Amer. math. monthly, 78, 639-644, (1971) · Zbl 0212.07701  Grosswald, E., Dedekind-Rademacher sums and their reciprocity formula, J. reine angew. math., 251, 161-173, (1971) · Zbl 0223.10012  Hardy, G.H., On certain series of discontinuous functions connected with the modular functions, Quart. J. math., 36, 93-123, (1905) · JFM 35.0468.03  Iseki, K., A proof of a transformation formula in the theory of partitions, J. math. soc. Japan, 4, 14-26, (1952) · Zbl 0049.31104  Knopp, K., Theory and application of infinite series, (1951), Blackie & Son Providence, R. I. · JFM 54.0222.09  Meyer, C., Über einige anwendungen dedekindscher summen, J. reine angew. math., 198, 143-203, (1957) · Zbl 0079.10303  Meyer, C., Bemerkungen zu den allgemeinen dedekindschen summen, J. reine angew. math., 205, 186-196, (1961) · Zbl 0097.26401  Rademacher, H., Egy reciprocitásképletröl a modulfüggevények elméletéböl, Mat. fiz. lapok, 40, 24-34, (1933)  Rademacher, H., Die reziprozitätsformel für dedekindsche summen, Acta sci. math. (Szeged), 12(B), 57-60, (1950) · Zbl 0037.31104  Rademacher, H., Generalization of the reciprocity formula for Dedekind sums, Duke math. J., 21, 391-397, (1954) · Zbl 0057.03801  Rademacher, H., Some remarks on certain generalized Dedekind sums, Acta arith, 9, 97-105, (1964) · Zbl 0128.27101  Rademacher, H.; Grosswald, E., Dedekind sums, () · Zbl 0251.10020  Zacier, D., Higher dimensional Dedekind sums, Math. ann., 202, 149-172, (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.