zbMATH — the first resource for mathematics

Residuen von Differentialformen auf Cohen-Macaulay-Varietäten. (German) Zbl 0342.14022

14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
Full Text: DOI EuDML
[1] Altman, A., Kleiman, S.: Introduction to Grothendieck Duality Theory. Lecture Notes in Mathematics146, Berlin-Heidelberg-New York: Springer 1970 · Zbl 0215.37201
[2] Grothendieck, A.: Local Cohomology. Lecture Notes in Mathematics41. Berlin-Heidelberg-New York: Springer 1967 · Zbl 0185.49202
[3] Hartshorne, R.: Residues and Duality. Lecture Notes in Mathematics20. Berlin-Heidelberg-New York: Springer 1966 · Zbl 0212.26101
[4] Hasse, H.: Theorie der Differentiale in algebraischen Funktionenkörpern mit vollkommenem Konstantenkörper. J. reine angew. Math.172, 55-64 (1934) · Zbl 0010.00601
[5] Herzog, J., Kunz, E.: Der kanonische Modul eines Cohen-Macaulay-Rings. Lecture Notes in Mathematics238. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0231.13009
[6] Kunz, E.: Holomorphe Differentiatialformen auf algebraischen Varietäten mit Singularitäten I. Manuscripta math.15, 91-108 (1975) · Zbl 0299.14013 · doi:10.1007/BF01168881
[7] Kunz, E.: Differentialformen auf algebraischen Varietäten mit Singularitäten II. Eingereicht bei den Abh. math. Sem. Univ. Hamburg · Zbl 0379.14005
[8] Scheja, G., Storch, U.: Über Spurfunktionen bei vollständigen Durchschnitten. J. reine angew. Math.278/279, 174-190 (1975) · Zbl 0316.13003
[9] Sharp, R.: The Cousin Complex for a Module over a Commutative Noetherian Ring. Math. Z.112, 340-356 (1969) · Zbl 0182.06103 · doi:10.1007/BF01110229
[10] Wiebe, H.: Über homologische Invarianten lokaler Ringe. Math. Ann.179, 257-274 (1969) · Zbl 0169.05701 · doi:10.1007/BF01350771
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.