×

Generic properties of parametrized vectorfields II. (English) Zbl 0342.58022


MSC:

37-XX Dynamical systems and ergodic theory
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] M. Medved’: Generic properties of parametrized vectorfields I. Czechoslovak Math. J., 25 (100) 1975, 376-388. · Zbl 0328.58013
[2] P. Brunovský: On one-parameter families of difFeomorphisms. Commentationnes mathematicae Universita Carolinae 11 (1970), 559-582. · Zbl 0202.23104
[3] P. Brunovský: On one-parameter families of diffeomorphisms. Commentationes mathematicae Universita Carolinae 12 (1971), 765 - 784.
[4] R. Abraham J. Robbin: Transversal Mappings and Flows. Benjamin, New York, 1967. · Zbl 0171.44404
[5] А. А. Андробов Є. А. Леонтович И. И. Гордон А. Г. Майер: Теория бифуркаций динамических систем на плоскости. Hauka, Москва 1967. · Zbl 1230.82006 · doi:10.1143/JPSJ.22.1362
[6] H. Whitney: Elementary structure of real algebraic varietes. Annals of Mathematics 66 (1957), 545-556. · Zbl 0078.13403 · doi:10.2307/1969908
[7] J. Dieudonné: Foundations of modern analysis. Russian translation, Mir, Moscow 1964. · Zbl 0122.29702
[8] Л. А. Люстерник В. Й. Соболев: Элементы функционального анализа. Hauka, Москва 1965. · Zbl 1225.00032 · doi:10.1126/science.148.3669.473
[9] A. Lasota A. James, Yorke: Bounds for periodic solutions of differential equations in Banach spaces. J. Diff. Equations 10 (1971), 83-91. · Zbl 0261.34035 · doi:10.1016/0022-0396(71)90097-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.