×

Higher order approximations to the boundary conditions for the finite element method. (English) Zbl 0342.65068


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65N99 Numerical methods for partial differential equations, boundary value problems
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Shmuel Agmon, Lectures on elliptic boundary value problems, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. · Zbl 0142.37401
[2] Alan E. Berger, \?² error estimates for finite elements with interpolated boundary conditions, Numer. Math. 21 (1973/74), 345 – 349. · Zbl 0287.65060
[3] Alan Berger, Ridgway Scott, and Gilbert Strang, Approximate boundary conditions in the finite element method, Symposia Mathematica, Vol. X (Convegno di Analisi Numerica, INDAM, Rome, 1972) Academic Press, London, 1972, pp. 295 – 313. · Zbl 0266.73050
[4] J. J. Blair, Bounds for the change in the solutions of second order elliptic PDE’s when the boundary is perturbed, SIAM J. Appl. Math. 24 (1973), 277 – 285. · Zbl 0252.35021
[5] J. BLAIR, ”Error bounds for spline approximation.” (Unpublished manuscript.)
[6] James H. Bramble and Joachim A. Nitsche, A generalized Ritz-least-squares method for Dirichlet problems, SIAM J. Numer. Anal. 10 (1973), 81 – 93. · Zbl 0287.65056
[7] James H. Bramble, Todd Dupont, and Vidar Thomée, Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections, Math. Comp. 26 (1972), 869 – 879. · Zbl 0279.65094
[8] James H. Bramble and Alfred H. Schatz, Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Comm. Pure Appl. Math. 23 (1970), 653 – 675. · Zbl 0204.11102
[9] J. H. Bramble and A. H. Schatz, Least squares methods for 2\?th order elliptic boundary-value problems, Math. Comp. 25 (1971), 1 – 32. · Zbl 0216.49202
[10] James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809 – 820. · Zbl 0226.65073
[11] R. E. Carlson and C. A. Hall, Ritz approximations to two-dimensional boundary value problems, Numer. Math. 18 (1971/72), 171 – 181. · Zbl 0213.17002
[12] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). · Zbl 0212.43801
[13] J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5 – 68 (French). · Zbl 0148.11403
[14] Gilbert Strang, Approximation in the finite element method, Numer. Math. 19 (1972), 81 – 98. · Zbl 0221.65174
[15] Gilbert Strang and Alan E. Berger, The change in solution due to change in domain, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 199 – 205. · Zbl 0259.35020
[16] Miloš Zlámal, On the finite element method, Numer. Math. 12 (1968), 394 – 409. · Zbl 0176.16001
[17] Miloš Zlámal, A finite element procedure of the second order of accuracy, Numer. Math. 14 (1969/1970), 394 – 402. · Zbl 0209.18002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.