Smale, S.; Williams, R. F. The qualitative analysis of a difference equation of population growth. (English) Zbl 0342.92014 J. Math. Biol. 3, 1-4 (1976). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 26 Documents MSC: 92D25 Population dynamics (general) PDFBibTeX XMLCite \textit{S. Smale} and \textit{R. F. Williams}, J. Math. Biol. 3, 1--4 (1976; Zbl 0342.92014) Full Text: DOI References: [1] Beddington, S., Free, C., Lawton, S.: Dynamic complexity in predator prey models framed in differential equations. Nature 255, 58-60 (1975). · doi:10.1038/255058a0 [2] Block, L.: An example where topological entropy is continuous. (To appear.) · Zbl 0379.58016 [3] Bowen, R., Lanford, O.: Zeta functions of restrictions of the shift transformation. Global Analysis (Proc. Symp. Pure Math., Vol. XIV). Amer. Math. Soc. 1970, 43-49. · Zbl 0211.56501 [4] Fatou, P.: Sur les ?quations fonctionnelles, II. Bull. Soc. Math. France 48, 33-94 (1920). [5] Guckenheimer, J.: Endomorphisms of the Riemann sphere, global analysis (Proc. Symp. Pure Math., Vol. XIV). Amer. Math. Soc. 1970, 95-123. [6] Guckenheimer, J., Oster, G., Ipakchi, A.: The dynamics of density dependent population models. (To appear.) [7] Hoppensteadt, F., Hyman, J.: Periodic solutions of a logistic difference equation. SIAM regional conference, University of Iowa, 1975, preprint. [8] Jakobson, M.: Structure of polynomial mappings on a singular set. Math. USSR, Sbornik 6, 97-114 (1968). · Zbl 0208.34002 · doi:10.1070/SM1968v006n01ABEH001054 [9] Li, T. Y., Yorke, J.: Period three implies chaos. SIAM. J. Applied Math. (To appear.) · Zbl 0351.92021 [10] May, R., Oster, G.: Bifurcations and dynamic complexity in simple ecological models, preprint. [11] Nitecki, Z., Non-singular endomorphisms of the circle, Global Analysis (Proc. Symp. Pure Math., Vol. XIV). Amer. Math. Soc. 1970, 203-220. [12] Peixoto, M.: Dynamical Systems (editor). New York: Academic Press 1973. · Zbl 0265.00011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.