×

zbMATH — the first resource for mathematics

Some results on unirationality of algebraic surfaces. (English) Zbl 0343.14021

MSC:
14M20 Rational and unirational varieties
14H45 Special algebraic curves and curves of low genus
14J25 Special surfaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Artin, M.: SupersingularK3 surfaces, Ann. Sci. Ec. Norm. Sup.7, 543-568 (1974) · Zbl 0322.14014
[2] Baker, H.F.: Principles of Geometry, Vol. IV. Cambridge: Cambridge Univ. Press 1925 · JFM 51.0531.07
[3] Bombieri, E., Mumford, D.: Enriques’ classification of surfaces in charp, II and III. In: Complex Analysis and Algebraic Geometry (A collection of papers dedicated to K. Kodaira). Iwanami Shoten and Cambridge Univ. Press, 1977. Inventiones Math.35, 197-232 (1976) · Zbl 0336.14010 · doi:10.1007/BF01390138
[4] Grothendieck, A.: Revètements étales et groupe fondamental (SGA 1). Berlin, Heidelberg, New York: Springer 1971 · Zbl 0234.14002
[5] Hudson, R.: Kummer’s quartic surface. Cambridge: Cambridge Univ. Press 1905 · JFM 36.0709.03
[6] Manin, Yu.I.: The theory of commutative formal groups over fields of finite characteristic, Russian Math. Surveys18, 1-80 (1963) · Zbl 0128.15603 · doi:10.1070/RM1963v018n06ABEH001142
[7] Miyanishi, M.: Unirational quasi-elliptic surfaces in characteristic 3. Osaka J. Math.13, 513-522 (1976) · Zbl 0358.14019
[8] Mizukami, M.: Birational morphisms from certain quartic surfaces to Kummer surfaces. Master Thesis, Univ. of Tokyo, 1976
[9] Mumford, D.: Abelian varieties. Oxford: Oxford Univ. Press 1970 · Zbl 0223.14022
[10] Narasimham, M.S., Ramanan, S.: Moduli of vector bundles on a compact Riemann surface. Ann. of Math.89, 19-51 (1969) · Zbl 0186.54902
[11] Newstead, P.E.: Stable bundles of rank 2 and odd degree over a curve of genus 2. Topology7, 205-215 (1968) · Zbl 0174.52901 · doi:10.1016/0040-9383(68)90001-3
[12] Oort, F.: Subvarieties of moduli spaces. Inventiones Math.24, 95-119 (1974) · Zbl 0271.14016 · doi:10.1007/BF01404301
[13] Reid, M.A.: The complete intersection of two or more quadrics. Thesis, Cambridge Univ., 1972
[14] Serre, J.-P.: On the fundamental group of a unirational variety. J. London Math. Soc.34, 481-484 (1959) · Zbl 0097.36301 · doi:10.1112/jlms/s1-34.4.481
[15] Shioda, T.: An example of unirational surfaces in characteristicp. Math. Ann.211, 233-236 (1974) · Zbl 0283.14009 · doi:10.1007/BF01350715
[16] Shioda, T.: On unirationality of supersingular surfaces. Math. Ann.225, 155-159 (1977) · Zbl 0341.14010 · doi:10.1007/BF01351719
[17] Shioda, T.: Algebraic cycles on certainK3 surfaces in characteristicp. Proc. Int. Conf. on Manifolds (Tokyo, 1973), 357-363 (1975)
[18] Shioda, T.: Kummer surfaces in characteristic 2. Proc. Japan Acad.50, 718-722 (1974) · Zbl 0332.14015 · doi:10.3792/pja/1195518796
[19] Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones Math.2, 134-144 (1966) · Zbl 0147.20303 · doi:10.1007/BF01404549
[20] Weil, A.: Number of solutions of equations in finite fields. Bull. Amer. Math. Soc.55, 497-508 (1949) · Zbl 0032.39402 · doi:10.1090/S0002-9904-1949-09219-4
[21] Weil, A.: Jacobi sums as ?Größencharaktere?. Trans. Amer. Math. Soc.73, 487-495 (1952) · Zbl 0048.27001
[22] Zariski, O.: On Castelnuovo’s criterion of rationalityp a=P 2=0 of an algebraic surface. Illinois J. Math.2, 303-315 (1958) · Zbl 0085.36203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.