×

zbMATH — the first resource for mathematics

Every Stein subvariety admits a Stein neighborhood. (English) Zbl 0343.32014

MSC:
32E10 Stein spaces
32T99 Pseudoconvex domains
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Forster, O., Ramspott, K.J.: Analytische Modulgarben und Endromisbundel. Inventiones math.2, 145-170 (1966) · Zbl 0154.33401
[2] Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann.146, 331-368 (1962) · Zbl 0173.33004
[3] LeBarz, P.: Sur les voisinages tubulaires en géométrie analytique. Math. Ann.215, 83-95 (1975) · Zbl 0333.32013
[4] Narasimhan, R.: The Levi problem for complex spaces II. Math. Ann.146, 195-216 (1962) · Zbl 0131.30801
[5] Narasimhan, R.: A note on Stein spaces and their normalizations. Ann. Scuola Norm. Sup. Pisa16, 327-333 (1962) · Zbl 0112.31102
[6] Narasimhan, R.: Several complex variables. University of Chicago Press, Chicago, 1971 · Zbl 0223.32001
[7] Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann.175, 257-286 (1968) · Zbl 0153.15401
[8] Royden, H.L.: Remarks on the Kobayashi metric. Proc. Maryland Conf. on Several Complex Variables (1970), Lecture Notes in Math.,185, pp. 125-137. Berlin-Heidelberg-New York: Springer 1971
[9] Royden, H.L.: The extension of regular holomorphic maps. Proc. Amer. Math. Soc.43, 306-310 (1974) · Zbl 0292.32019
[10] Seabury, C.: Some extension theorems for regular maps of Stein manifolds. Bull. Amer. Math. Soc.80, 1223-1224 (1974) · Zbl 0305.32015
[11] Siegfried, P.: Un théorème de finitude pour les morphismesq-convexes. Dissertation of the University of Regensburg 1972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.