zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Cauchy problem for quasi-linear symmetric hyperbolic systems. (English) Zbl 0343.35056

35L60Nonlinear first-order hyperbolic equations
35D05Existence of generalized solutions of PDE (MSC2000)
35L45First order hyperbolic systems, initial value problems
35B45A priori estimates for solutions of PDE
46E40Spaces of vector- and operator-valued functions
Full Text: DOI
[1] Kato, T., Linear evolution equations of ?hyperbolic? type. J. Fac. Sci. Univ. Tokyo 17, 241-258 (1970). · Zbl 0222.47011
[2] Kato, T., Linear evolution equations of ?hyperbolic type?, II. J. Math. Soc. Japan 25, 648-666 (1973). · Zbl 0262.34048 · doi:10.2969/jmsj/02540648
[3] Friedrichs, K.O., Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7, 345-392 (1954). · Zbl 0059.08902 · doi:10.1002/cpa.3160070206
[4] Sobolev, S.L., Applications of functional analysis in mathematical physics. AMS Translations of Math. Monographs. 7, 1963. · Zbl 0123.09003
[5] Fischer, A.E., & J.E. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic systems, I. Commun. Math. Phys. 28, 1-38 (1972). · Zbl 0247.35082 · doi:10.1007/BF02099369
[6] Bers, L., F. John, & M. Schechter, Partial Differential Equations. Interscience 1964. · Zbl 0126.00207
[7] Kallman, R.R., & G.-C. Rota, On the inequality ?f??2 ? 4 ?f? ?f??. Inequalities, Vol. 2, pp. 187-192. Academic Press 1970. · Zbl 0222.47009
[8] Hormander, L., Linear partial differential operators. Springer 1963.
[9] Massey, F.J. III, Abstract evolution equations and the mixed problem for symmetric hyperbolic systems, Trans. Amer. Math. Soc. 168, 165-188 (1972). · Zbl 0239.35062 · doi:10.1090/S0002-9947-1972-0298231-4