×

\(L_p\)- theory for a class of singular elliptic differential operators. II. (English) Zbl 0343.35067

MSC:

35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
35B45 A priori estimates in context of PDEs
35P20 Asymptotic distributions of eigenvalues in context of PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47F05 General theory of partial differential operators
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] S. Agmon: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math. 15 (1962), 119-147. · Zbl 0109.32701
[2] И. Ц. Гохберг М. Г. Крейи (I. C. Gochberg M. G. Krejn): Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве. Изд. ”Наука”, Москва 1965. (There exists an
[3] F. Riesz B. Sz.-Nagy: Vorlesungen über Funktionalanalysis. VEB Deutscher Verl. d. Wissenschaften Berlin 1968 (2. Aufl.). · Zbl 0176.42401
[4] H. Triebel: Über die Verteilung der Approximationszahlen kompakter Operatoren in Sobolev-Besov-Räumen. Inventiones Math. 4 (1967), 275 - 293. · Zbl 0165.14501
[5] H. Triebel: Höhere Analysis. VEB Deutscher Verlag d. Wissenschaften. Berlin 1972. · Zbl 0257.47001
[6] H. Triebel: Interpolation theory for function spaces of Besov type defined in domains. II. Math. Nachrichten 58 (1973), 63-86. · Zbl 0233.46049
[7] H. Triebel: \(L_{p}\)-theory for a class of singular elliptic differential operators. Czech. Math. J. 23 (1973), 525-541. · Zbl 0268.35044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.