×

Sasakian \(\varphi\)-symmetric spaces. (English) Zbl 0343.53030


MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C35 Differential geometry of symmetric spaces
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
Full Text: DOI

References:

[1] S. HELGASON, Differential geometry and symmetric spaces, Academic Press, 1962. · Zbl 0111.18101
[2] T. KATO AND K. MOTOMIYA, A study on certain homogeneous spaces, Thoku Math. J., 21 (1969), 1-20. · Zbl 0188.54203 · doi:10.2748/tmj/1178243030
[3] S. KOBAYASHI AND K. NOMizu, Foundations of differential geometry, vol. II, Interscienc Publishers, 1969. · Zbl 0526.53001
[4] K. MOTOMIYA, A study on almost contact manifolds, Thoku Math. J., 20 (1968), 73-90 · Zbl 0175.19201 · doi:10.2748/tmj/1178243219
[5] K. OGIUE, On fiberings of almost contact manifolds, Kdai Math. Sem. Rep., 17 (1965), 53-62. · Zbl 0136.18101 · doi:10.2996/kmj/1138845019
[6] M. OKUMURA, Some remarks on spaces with a certain contact structure, Thoku Math J., 14 (1962), 135-145. · Zbl 0119.37701 · doi:10.2748/tmj/1178244168
[7] T. TAKAHASHI, Sasakian manifold with pseudo-Riemannian metric, Thoku Math. J., 2 (1969), 271-290. · Zbl 0187.43601 · doi:10.2748/tmj/1178242996
[8] S. TANNO, Some transformations on manifolds with almost contact and contact metri structures, I, II, Thoku Math. J., 15 (1963), 140-147, 322-331. · Zbl 0114.38004 · doi:10.2748/tmj/1178243840
[9] S. TANNO, Isometric immersions of Sasakian manifold in spheres, Kdai Math. Sem Rep., 21 (1969), 448-458. · Zbl 0196.25501 · doi:10.2996/kmj/1138845991
[10] S. TANNO AND Y. B. BAIK, 0-holomorphic special bisectional curvature, Thoku Math J., 22 (1970), 184-190. · Zbl 0208.50202 · doi:10.2748/tmj/1178242811
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.