×

zbMATH — the first resource for mathematics

Wave front evolution and equivariant Morse lemma. (English) Zbl 0343.58003

MSC:
58C25 Differentiable maps on manifolds
57R70 Critical points and critical submanifolds in differential topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnol’d, Functional Anal. i Prilozhen. 6 pp 3– (1972)
[2] Functional Anal. Appl. 6 pp 254– (1973)
[3] Mathematical Methods of Classical Mechanics, Moscow, 1974.
[4] Critical points of smooth functions, Vancouver Int. Congress of Math., 1974 or Russian Mathmatical Surveys (Uspekhi), 1975, 30 No. 5, pp. 3–65.
[5] Arnol’d, Funct. Anal. and Appl. 9 pp 81– (1975)
[6] Arnol’d, Russian Mathematical Surveys (Uspekhi) 31 (1976)
[7] Structural Stability of Composed Mappings, Preprint.
[8] Smooth functions, invariant under the action of a finite group, Preprint, 1975.
[9] Bochner, Ann. Math. Ser. 2 46 pp 372– (1945)
[10] Bifurcation of Whitney maps and critical Pareto sets, Preprint, 1975.
[11] surgery of smooth mapping singularities, Isvestia A. N. U.S.S.R., 1972, No. 6.
[12] Morin, C.R. 260 pp 5662– (1965)
[13] Differentiable invariants, Preprint, 1975.
[14] Stabilité structurelle équivariante, I, Orsay, 1975.
[15] Stabilité locale des applicatiosn équivariantes, Preprint 1975.
[16] Schwarz, Smooth functions, invariant under the action of a compact Lie group · Zbl 0297.57015
[17] Solomon, Nagoya Math. J. 22 pp 57– (1963) · Zbl 0117.27104
[18] Sotomayor, Springer Lecture Notes 468 pp 75– (1975)
[19] Stabilité Structurelle et Morphogenese, Benjamin, 1972.
[20] (r,s)-stability of unfolding, Preprint, Regensburg, 1974.
[21] (r, s) stability of Unfoldings Springer, Lecture Notes 393, 1974. · Zbl 0288.57017
[22] Zakalyukin, Funct. Anal. and Applications 10 pp 37– (1976)
[23] Zakalyukin, Funct. Anal. and Applications 10 (1976)
[24] Zeeman, Springer Lecture Notes 468 pp 101– (1975)
[25] and , Elements of Mathmatical Physics, Moscow, 1973.
[26] Zeldovitch, Russian Mathematical Surveys (Uspekhi) 30 pp 204– (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.