Stability of iterative schemes for nonselfadjoint equations. (English) Zbl 0343.65037


65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65J05 General theory of numerical analysis in abstract spaces
Full Text: EuDML


[1] J. E. Gunn: The Solution of elliptic difference equations by semiexplicit iterative techniques. SIAM J. Numer. Anal. 2, 24-45 (1964). · Zbl 0137.33301
[2] M. M. Gupta: Convergence and stability of finite difference schemes for some elliptic equations. Ph. D. thesis, University of Saskatchewan, Saskatoon, Canada (1971).
[3] L. V. Kantorovich G. P. Akilov: Functional analysis in normed spaces. New York: Pergamon Press 1964. · Zbl 0127.06104
[4] H. O. Kreiss: Über die Stabilitätsdefinition für Differenzengleichungen die partieile Differentialgleichungen approximieren. Nordisk Tidskr. Informations - Behandling (BIT) 2, 153-181 (1962). · Zbl 0109.34702
[5] P. D. Lax, and B. Wendroff: Difference schemes for hyperbolic equations with high order of accuracy. Comm. Pure Appl. Math. 17, 381-398 (1964). · Zbl 0233.65050
[6] G. G. O’Brian M. A. Hyman, and S. Kaplan: A study of the numerical solution of partial differential equations. J. Math, and Phys. 29, 223 - 251 (1951). · Zbl 0042.13204
[7] R. D. Richtmyer, K. W. Morton: Difference methods for initialvalue problems. 2nd, New York: Interscience 1967. · Zbl 0155.47502
[8] V. S. Ryabenkii, and A. F. Filippov: Über die Stabilität von Differenzengleichungen. Berlin; Deutscher Verlag der Wissenschaften 1960.
[9] A. A. Samarskii: Classes of Stable Schemes. Ž. Vyčisl. Mat. i Mat. Fiz. 7, 1096-1133 (1967).
[10] A. A. Samarskii: Necessary and Sufficient conditions for the stability of two-layer difference schemes. Soviet Math. Dokl. 9, 946-950 (1968). · Zbl 0179.20201
[11] A. A. Samarskii: Two layer iteration schemes for nonselfadjoint equations. Soviet Math. Dokl. 10, 554-558 (1969). · Zbl 0189.44002
[12] V. Thomée: Stability theory for partial difference operators. SIAM Rev. 11, 152-195 (1969). · Zbl 0176.09101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.