×

zbMATH — the first resource for mathematics

Free boundary problems in the theory of fluid flow through porous media: Existence and uniqueness theorems. (English) Zbl 0343.76036

MSC:
76S05 Flows in porous media; filtration; seepage
65Z05 Applications to the sciences
35Q99 Partial differential equations of mathematical physics and other areas of application
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. I. Aravin - S. A. Numerov,Theory of fluid flow in undeformable porous media, Jerusalem: Israel Program for scientific translations 1965.
[2] Agmon, S.; Douglis, A.; Niremberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12, 623-727 (1959) · Zbl 0093.10401
[3] Baiocchi, C., Su un problema di frontiera libera connesso a questioni di idraulica, Ann. di Mat. pura e appl. (IV), XCII, 107-127 (1972) · Zbl 0258.76069
[4] C. Baiocchi - V. Comincioli -L. Guerri -G. Volpi,Free boundary problems in the theory of fluid flow through porous media: numerical approach, Calcolo, vol. X, 1973. · Zbl 0296.76052
[5] Brezis, H.; Stampacchia, G., Sur la régularité de la solution d’inéquations elliptiques, Bull. Soc. Math. France, 96, 153-180 (1968) · Zbl 0165.45601
[6] F. Brezzi,Sull’analisi numerica del problema di Dirichlet nei poligoni (to appear). · Zbl 0284.65091
[7] Chicco, M., Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale, Boll. U.M.I., 3, 4, 384-394 (1970) · Zbl 0193.39102
[8] Citrini, D., Studio elementare delle falde freatiche sjocianti a mare, Istituto Lombardo, 94, 709-728 (1960)
[9] V. Comincioli - L. Guerri - G. Volpi,Analisi numerica di un problema di frontiera libera connesso col moto di un fluido attraverso un mezzo poroso, Publication no. 17 of Laboratorio di Analisi Numerica del C.N.R., Pavia (1971). · Zbl 0263.65075
[10] Cryer, C. W., On the approximate solution of free boundary problems using finite differences, J. Assoc. Comput. Mach., 17, 3, 397-411 (1970) · Zbl 0217.21903
[11] Duvaut, G.; Lions, J. L., Les inéquations en Mécanique et en Physique (1972), Paris: Dunod, Paris · Zbl 0298.73001
[12] Fichera, G., Sul problema della derivata obliqua e sul problema misto per l’equazione di Laplace, Boll. U.M.I., 7, 3, 367-377 (1952) · Zbl 0047.34303
[13] Fichera, G., Una introduzione alla teoria delle equazioni integrali singolari, Rend. Mat. pura e appl., 17, 82-119 (1958) · Zbl 0097.08602
[14] Gagliardo, E., Proprietà di alcune classi di funzioni in più variabili, Ricerche di Mat., 7, 102-137 (1958) · Zbl 0089.09401
[15] R. Glowinski - J. L. Lions - R. Tremolières,Résolution numérique des inéquations de la Mécanique et de la Physique, Forthcoming book, Dunod, Paris.
[16] R. E. Glover,The pattern fresh-water flow in a coastal aquifer, Journal of Geophysical Research, April 1969.
[17] Grisvard, P., Equations différentielles abstraites, Ann. Sc. Ec. Norm. Sup., 2, 4, 311-395 (1969) · Zbl 0193.43502
[18] Grisvard, P., Alternative de Fredholm relative au problème de Dirichlet dans un polygone ou un polyèdre, Boll. U.M.I., 5, 4, 132-164 (1972) · Zbl 0277.35035
[19] Harr, M. E., Groundwater and seepage (1962), New York: McGraw-Hill, New York
[20] H. R. Henry,Salt intrusion into fresh-water aquifers, Journal of Geophysical Research, November 1959.
[21] Lewy, H.; Stampacchia, G., On the regularity of the solution of a variational inequality, Comm. P.A.M., 22, 153-188 (1969) · Zbl 0167.11501
[22] Jeppson, R. W., Free-surface flow through heterogeneous porous media, Journal of the Hydraulics Division Proceedings of the American Society of Civil Engineers, 95, 364-381 (1969)
[23] Jeppson, R. W., Seepage from channels through layered porous mediums, Water Resources Research, 4, 2, 435-445 (1968)
[24] A. Lienard,Problème plan de la dérivée oblique dans la théorie du potentiel, J. Ecole Polytechnique (1937), pp. 35-226.
[25] Lions, J. L.; Stampacchia, G., Variational inequalities, Comm. Pure Appl. Math., 20, 493-519 (1967) · Zbl 0152.34601
[26] Lions, J. L., Quelques méthodes de resolution de problèmes aux limites non linéaires (1969), Paris: Dunod-Gauthier-Villars, Paris · Zbl 0189.40603
[27] J. L. Lions - E. Magenes,Non-homogeneous boundary value problems and applications, Vol. I-III, Grundlehren B. 181-183, Springer, 1972, 1973.
[28] Magenes, E., Su alcuni problemi ellittici di frontiera libera connessi con il comportamento dei fluidi nei mezzi porosi, Symposia Math. I.N.A.M., X, 265-279 (1972) · Zbl 0261.76063
[29] Magenes, E.; Stampacchia, G., I problemi al contorno per le equazioni differenziali di tipo ellittico, Ann. Sc. Norm. Sup. Pisa, 12, 247-357 (1958) · Zbl 0082.09601
[30] U. Maione - S. Franzetti,Unconfined flow downstream of an homogeneous earth dam with impervious sheetpiles, Thirteenth Congress of the International Association for Hydraulic research Kyoto (1969), pp. 191-204.
[31] Maione, U., Sul moto di filtrazione a superficie libera a valle di diaframmi impermeabili (1971), Pavia: Istituto di Idraulica, Pavia
[32] Mauersberger, P., A variational principle for steady state groundwater flow with a free surface, Pageoph., 60, 101-106 (1965)
[33] S. G. Mikhlin,Integral equations, Pergamon Press, 1957. · Zbl 0077.09903
[34] Miranda, C., Su un problema di frontiera libera, Symposia Math., 2, 71-83 (1968)
[35] N. I. Muskhelishvili,Singular integral equations, Groningen, 1953. · Zbl 0051.33203
[36] Muskat, M., The flow of homogeneous fluids through porous media (1937), New York: McGraw-Hill, New York · JFM 63.1368.03
[37] J. Necas,Les méthodes directes dans la théorie des équations elliptiques, Prague, 1967. · Zbl 1225.35003
[38] Neumann, S. T.; Witherspoon, P. A., Finite element method of analyzing steady seepage with a free surface, Water Resources Research, 6, 3, 889-897 (1970)
[39] Neumann, S. T., Variational principles for confined and unconfined flow of groundwater, Water Resources Research, 6, 5, 1376-1387 (1970)
[40] Peetre, J., Mixed problems for higher order elliptic equations in two variables, I e II, Ann. Sc. Norm. Sup. Pisa, 15, 337-353 (1961) · Zbl 0108.28802
[41] Prodi, G., Tracce sulla frontiera delle funzioni di Beppo Levi, Rend. Sem. Mat. Padova, 26, 36-60 (1956) · Zbl 0072.32802
[42] Polubarinova-Kochina, P. Ya., The theory of groundwater movement (1962), Princeton, N. J.: Princeton University Press, Princeton, N. J. · Zbl 0114.42601
[43] Russo-Spena, A., Moti di filtrazione a superficie libera attraverso sistemi di stati filtranti di permeabilità diverse, L’Energia Elettrica, 1, 1-17 (1960)
[44] Schwartz, L., Théorie des distributions (1966), Paris: Hermann, Paris
[45] Shamir, E., Mixed boundary value problems for elliptic equation in the plane, the L^p theory, Ann. Sc. Norm. Sup. Pisa, 17, 117-139 (1963) · Zbl 0117.07002
[46] Shamir, E., Regularization of mixed second order elliptic problems, Israel J. of. Math., 6, 150-168 (1958) · Zbl 0157.18202
[47] Southwell, R. V., Relaxation methods in theoretical physics (1946), Oxford: Clarendon Press, Oxford · Zbl 0061.27706
[48] Stampacchia, G., Formes bilinéaires coercitives sur les ensembles convexes, C.R. Acad. Sc., 258, 4413-4416 (1964) · Zbl 0124.06401
[49] Stampacchia, G., Su un problema relativo alle equazioni di tipo ellittico del secondo ordine, Ricerche Mat., 5, 3-24 (1956) · Zbl 0073.32001
[50] Stampacchia, G., Regularity of solutions of some variational inequalities, Proc. Symp. in pure Mat., 18, 271-281 (1970)
[51] G. Stampacchia,Variational inequalities, Proc. Nato, Venice (1968), pp. 101-192.
[52] G. Talenti,Sulle equazioni integrali di Wiener-Hopf, Centro di Analisi Globale del C.N.R., Firenze, 1972.
[53] Talenti, G., Sulle equazioni integrali di Wiener-Hopf, Boll. Un. Mat. Ital., IV, 7, 18-118 (1973) · Zbl 0281.45007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.