×

zbMATH — the first resource for mathematics

On zero-degree stochastic geometric programs. (English) Zbl 0343.90035

MSC:
90C15 Stochastic programming
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Duffin, R. J., Peterson, E. L., andZener, C.,Geometric Programming, Theory and Application, John Wiley and Sons, New York, New York, 1967. · Zbl 0171.17601
[2] Stark, R. M., andNicholls, R. L.,Mathematical Foundations for Design?Civil Engineering Systems, McGraw-Hill Book Company, New York, New York, 1972. · Zbl 0263.90001
[3] Wilde, D. J., andBeightler, C. S.,Foundations of Optimization, Prentice Hall, Englewood Cliffs, New Jersey, 1967. · Zbl 0189.19702
[4] Zener, C.,Engineering Design by Geometric Programming, John Wiley and Sons, New York, New York, 1971.
[5] Avriel, M., andWilde, D. J.,Stochastic Geometric Programming, Proceedings of the Princeton Symposium on Mathematical Programming, Princeton, New Jersey, 1970.
[6] Springer, M., andThompson, W.,The Distribution of Products of Independent Random Variables, SIAM Journal on Applied Mathematics, Vol. 14, pp. 511-526, 1966. · Zbl 0144.40701 · doi:10.1137/0114046
[7] Bateman, H.,Tables of Integral Transforms, Vol. 1, McGraw-Hill Book Company, New York, New York, 1951. · Zbl 0043.04603
[8] Aitchison, J., andBrown, J. A. C.,The Log-Normal Distribution, Cambridge University Press, London, England, 1969.
[9] Folkers, J. S.,Ship Operation and Design, Optimization and Design, Edited by M. Avriel, M. J. Rijckaert, and D. J. Wilde, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
[10] Neghabat, F., andStark, R. M.,A Cofferdam Design Optimization, Mathematical Programming, Vol. 3, pp. 263-275. · Zbl 0265.90063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.