×

zbMATH — the first resource for mathematics

Triangulation à \(V_5\) séparée dans le problème des quatre couleurs. (French) Zbl 0344.05113
MSC:
05C15 Coloring of graphs and hypergraphs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Appel, K; Haken, W, An unavoidable set of configurations in planar triangulations, J. combinatorial theory ser. B, 26, 1-21, (1979) · Zbl 0407.05035
[2] Appel, K; Haken, W, The existence of unavoidable sets of geographically good configurations, Illinois J. math., 20, 218-297, (1976) · Zbl 0322.05141
[3] Birkhoff, G.D, The reducibility of maps, Amer. J. math., 35, 114-128, (1913)
[4] Chojnacki, C, A contribution to the four color problem, Amer. J. math., 64, 36-54, (1942) · Zbl 0061.41305
[5] Haken, W, An existence theorem for planar maps, J. combinatorial theory, 14, 180-184, (1975) · Zbl 0259.05103
[6] Heesch, H, Untersuchungen zum vierfarbenproblem, (1969), B-I-Hochschulscripten 810/810a/810b, Bibliographisches Institut Mannheim/Vienna/Zurich · Zbl 0187.20904
[7] Heesch, H, Chromatic reduction of the triangulations Te , e = e5 + e7, J. combinatorial theory ser. B, 19, 119-149, (1975)
[8] Kempe, A.B, On the geographical problem of the four colors, Amer. J. math., 2, 193-200, (1879)
[9] \scJ. Mayer, Problème des quatre couleurs: Un contre-exemple doit avoir au moins 96 sommets, J. Combinatorial Theory, a paraitre.
[10] Stanik, R, Zur reduction von triangulationen, ()
[11] Stromquist, W, Some aspects of the four color problem, ()
[12] Tutte, W; Whitney, H, Kempe chains and the four color problem, Utilitas math., 2, 241-281, (1972) · Zbl 0253.05120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.