Triangulation à \(V_5\) séparée dans le problème des quatre couleurs. (French) Zbl 0344.05113


05C15 Coloring of graphs and hypergraphs
Full Text: DOI


[1] Appel, K.; Haken, W., An unavoidable set of configurations in planar triangulations, J. Combinatorial Theory Ser. B, 26, 1-21 (1979) · Zbl 0407.05035
[2] Appel, K.; Haken, W., The existence of unavoidable sets of geographically good configurations, Illinois J. Math., 20, 218-297 (1976) · Zbl 0322.05141
[3] Birkhoff, G. D., The reducibility of maps, Amer. J. Math., 35, 114-128 (1913) · JFM 44.0568.01
[4] Chojnacki, C., A contribution to the four color problem, Amer. J. Math., 64, 36-54 (1942) · Zbl 0061.41305
[5] Haken, W., An existence theorem for planar maps, J. Combinatorial Theory, 14, 180-184 (1975) · Zbl 0259.05103
[6] Heesch, H., Untersuchungen zum Vierfarbenproblem (1969), B-I-Hochschulscripten 810/810a/810b, Bibliographisches Institut: B-I-Hochschulscripten 810/810a/810b, Bibliographisches Institut Mannheim/Vienna/Zurich · Zbl 0187.20904
[7] Heesch, H., Chromatic reduction of the triangulations \(T_e , e = e_5 + e_7\), J. Combinatorial Theory Ser. B, 19, 119-149 (1975) · Zbl 0242.05110
[8] Kempe, A. B., On the geographical problem of the four colors, Amer. J. Math., 2, 193-200 (1879)
[9] J. Mayer; J. Mayer
[10] Stanik, R., Zur Reduction von Triangulationen, (Dissertation (1974), Technische Universität Hannover)
[11] Stromquist, W., Some Aspects of the Four Color Problem, (Thèse (1975), Harvard University)
[12] Tutte, W.; Whitney, H., Kempe chains and the four color problem, Utilitas Math., 2, 241-281 (1972) · Zbl 0253.05120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.