zbMATH — the first resource for mathematics

A generalized maximum principle and estimates of max vrai u for nonlinear parabolic boundary value problems. (English) Zbl 0344.35049
35K55 Nonlinear parabolic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B45 A priori estimates in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
Full Text: EuDML
[1] J. Kačur : Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order. (I, II).
[2] J. Kačur: Application of Rothe’s method to nonlinear evolution equations. Mat. Časopis Sloven. Akad. Vied, 25, (1975), N-1, 63-81.
[3] П. П. Мосолов: Вариационные методы в нестационарных задачах. (Параболический случай) Изв. АН СССР, 34 (\? 1970), 425-457. · Zbl 1170.92319
[4] K. Rektorys: On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables. Czech. Math. Journal, 21 (96) 1971, 318-339. · Zbl 0217.41601
[5] О. А. Ладыженская: Решение в целом первой краевой задачи для квазилинейных параболических уравнений. ДАН СССР 107. 1956, 635-639. · Zbl 0075.23003
[6] J. Kačur: On existence of the weak solution for non-linear partial differential equations of elliptic type. I. Comment. Math. Univ. Carolinae, 11, 1 (1970), 137-181. · Zbl 0195.39503
[7] J. Kačur: On existence of the weak solution for non-linear partial differential equations of elliptic type. II. Comment. Math. Univ. Carolinae, 13, 2 (1972), 211 - 225. · Zbl 0242.35031
[8] J. Nečas: Les méthodes directes en théorie équations elliptiques. Prague, 1967. · Zbl 1225.35003
[9] A. Friedman: Partial differential equations of parabolic type. Prentice-Hall, INC, 1964. · Zbl 0144.34903
[10] О. А. Ладыженская В. А. Солонников Н. Н. Уральцева: Линейные и квазилинейные уравнения параболического типа. ,Hauka”, Москва 1967. · Zbl 1204.62024
[11] J. Kačur: On boundedness of the weak solution for some class of quasilinear partial differential equations. Časopis Pěst. Mat., 98 (1973), 43 - 55.
[12] М. А. Красносельский: Топологические методы в теории нелинейных интегральных уравнений. Москва, 1956. · Zbl 0995.90522
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.