Beauzamy, Bernard; Maurey, Bernard Points minimaux et ensembles optimaux dans les espaces de Banach. (French) Zbl 0344.46049 J. Funct. Anal. 24, 107-139 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 ReviewsCited in 30 Documents MSC: 46B99 Normed linear spaces and Banach spaces; Banach lattices 46B10 Duality and reflexivity in normed linear and Banach spaces 46B03 Isomorphic theory (including renorming) of Banach spaces 46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces 41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces) 52A05 Convex sets without dimension restrictions (aspects of convex geometry) PDF BibTeX XML Cite \textit{B. Beauzamy} and \textit{B. Maurey}, J. Funct. Anal. 24, 107--139 (1977; Zbl 0344.46049) Full Text: DOI OpenURL References: [1] Ando, T, Contractive projections in Lp spaces, Pacific J. math., 17, No. 3, (1966) · Zbl 0192.23304 [2] Beauzamy, B, Note aux C.R.A.S. Paris, t. 280, 717-720, (17 mars 1975) [3] {\scS. J. Bernau}, Theorems of Korovkin type for Lp spaces, Pacific J. Math., A paraître. · Zbl 0259.46030 [4] Bohnenblust, F, Subspaces of lnp spaces, Amer. J. math., 72, 63-64, (1941) · JFM 67.0404.01 [5] Calvert, B, Convergence sets in reflexive Banach spaces, (), No. 2 · Zbl 0273.46008 [6] Dunford, J; Schwartz, J.T, Linear operators, (1958), Interscience Publishers New York [7] {\scH. Fakhoury}, Deux caractérisations des espaces de Banach hilbertisables, A paraître. [8] de Figueiredo, D.G; Karlovitz, L.A, On the extension of contractions on normed spaces, () · Zbl 0239.47005 [9] Kakutani, S, Some characterizations of Euclidean spaces, Japan. J. math., 16, 93-97, (1939) · JFM 65.0506.01 [10] {\scG. Köthe}, “Topological Vector Spaces,” Springer-Verlag, New York. [11] Lindenstrauss, J, On non-separable reflexive Banach spaces, Bull. amer. math. soc., 72, 967-970, (1966) · Zbl 0156.36403 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.