×

Semi-identifying lifts and a generalization of the duality theorem for topological functors. (English) Zbl 0345.18002


MSC:

18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
54A99 Generalities in topology
18D30 Fibered categories
18A20 Epimorphisms, monomorphisms, special classes of morphisms, null morphisms
18A35 Categories admitting limits (complete categories), functors preserving limits, completions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Antoine, Extension minimale de la catégorie des espaces topologiques. Compt, Rend. Aced. Sci. Paris, sér. A 262 pp 1389– (1966)
[2] Etude élémentaire des catégories d’ensembles structurés, Bull. Soc. Math. Belgique 18 pp 142– (1966)
[3] Bourbaki, Elémenta de mathématique: a) Lime III, Topologie générale, Chap. IX (1948)
[5] G. C. L. Brümmer 1971
[6] P. Freyd 1964
[7] J. W. Gray 1966
[8] A. Grothendieok 1961
[9] Herrlich, Topological functors, Gen. Top. Appl. 4 pp 126– (1974) · Zbl 0288.54003
[10] R.-E. Hoffmann 1972
[11] R.-E. Hoffmann 1973
[12] R.-E. Hoffmann
[13] R.-E. Hoffmann
[14] R.-E. Hoffmann E, M 1974
[15] S. Mac Lane 1971
[16] Th. Marny 1973
[17] Roberts, A characterization of initial functors, J. of Algebra 8 pp 181– (1968) · Zbl 0172.30904
[18] H. Schubert 1972
[19] Wyler, a) On the categories of general topology and topological algebra, Archiv d. Math. 22 pp 7– (1971) · Zbl 0265.18008
[20] Top categories and categorical topology, Gen. Top. Appl. 1 pp 17– (1971) · Zbl 0215.51502
[21] Wyler, Quotient maps, Uen. Top. Appl. 3 pp 149– (1973) · Zbl 0278.54009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.