×

zbMATH — the first resource for mathematics

Finite groups in which the generalized Fitting group of the centralizer of some involution is symplectic but not extraspecial. (English) Zbl 0345.20024

MSC:
20D25 Special subgroups (Frattini, Fitting, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aschbacher M., Math. Z 127 pp 45– (1972) · Zbl 0225.20020 · doi:10.1007/BF01110103
[2] Aschbacher M., Illinois J. Math 127 (1972)
[3] Aschbacher M., J. Alg 127 (1972)
[4] Aschbacher M., Commun. Algebra 3 pp 901– (1975) · Zbl 0326.20024 · doi:10.1080/00927877508822079
[5] Aschbacher M., A characterization of Chevalley groups over fields of odd order · Zbl 0393.20011 · doi:10.2307/1971100
[6] Aschbacher M., Involutions in Chevalley groups over fields of even order · Zbl 0359.20014 · doi:10.1017/S0027763000017438
[7] Fischer B., Inventiones Math 13 pp 232– (1971) · Zbl 0232.20040 · doi:10.1007/BF01404633
[8] Goldschmidt D., Strongly closed 2-subgroups of finite groups · Zbl 0333.20013 · doi:10.2307/1971040
[9] Gorenstein D., Finite Groups (1968)
[10] Janko Z., J. Alg 13 pp 517– (1969) · Zbl 0184.04602 · doi:10.1016/0021-8693(69)90114-8
[11] Lundgren J., J. Alg 27 pp 491– (1973) · Zbl 0276.20010 · doi:10.1016/0021-8693(73)90060-4
[12] Thompson J., Pacific J. Math 48 pp 511– (1973) · Zbl 0291.20014 · doi:10.2140/pjm.1973.48.511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.