zbMATH — the first resource for mathematics

Injective Banach lattices. (English) Zbl 0345.46007

46A40 Ordered topological linear spaces, vector lattices
46M10 Projective and injective objects in functional analysis
Full Text: DOI EuDML
[1] Alfsen, A.: Compact convex sets and boundary integrals. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0209.42601
[2] Alfsen, A., Effros, E.: Structure in real Banach spaces. Ann. of Math., II. Ser.96, 98-113 (1972) · Zbl 0248.46019 · doi:10.2307/1970895
[3] Cartwright, D.I.: Extensions of positive operators between Banach lattices. Mem. Amer. math. Soc.164 (1975) · Zbl 0314.47015
[4] Fremlin, D.H.: Topological Riesz Spaces and Measure Theory. Cambridge: University Press 1974 · Zbl 0273.46035
[5] Giertz, G.: Darstellung von Banachverb?nden durch Schnitte in B?ndeln: Technische Hochschule Darmstadt, Preprint Nr. 294
[6] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. Lecture Notes Series 338. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0259.46011
[7] Lotz, H.P.: Extensions and liftings of positive linear mappings on Banach lattices. Trans. Amer. math. Soc.211, 85-100 (1975) · Zbl 0351.47005 · doi:10.1090/S0002-9947-1975-0383141-7
[8] Neveu, J.: Discrete parameter martingales. Amsterdam-Oxford-New York: North-Holland-Elsevier 1975 · Zbl 0345.60026
[9] Schaefer, H.H.: Banach Lattices and Positive Operators. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0296.47023
[10] Semadeni, Z.: Banach spaces of continuous functions. Warsaw: PKN 1971 · Zbl 0225.46030
[11] Wils, W.: The ideal centre of partially ordered vector spaces. Acta. Math.127, 41-77 (1971) · Zbl 0224.46010 · doi:10.1007/BF02392051
[12] Wright, J.D.M.: Stone-algebra-valued measures and integrals. Proc. London. math. Soc., III. Ser.19, 107-122 (1969) · Zbl 0186.46504 · doi:10.1112/plms/s3-19.1.107
[13] Wright, J.D.M.: A Radon-Nikodym theorem for Stone-algebra-valued measures. Trans. Amer. math. Soc.139, 75-94 (1969) · Zbl 0182.46902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.