zbMATH — the first resource for mathematics

On computing the range of a rational function of n variables over a bounded region. (English) Zbl 0345.65024

65H10 Numerical computation of solutions to systems of equations
65G50 Roundoff error
Full Text: DOI
[1] Dussel, R.: Einschließung des Minimalpunktes einer streng konvexen Funktion auf einemn-dimensionalen Quader. Interner Bericht Nr. 72/2, Universität Karlsruhe, Institut für Praktische Mathematik, 1972. (See also: Dussel, R., in: Proceedings of a Symposium on interval mathematics. Sprincer lecture note series in Computer Sciences, 1975).
[2] Dussel, Schmitt: Die Berechnung von Schranken für den Wertebereich eines Polynoms in einem Intervall. Computing6, 35–60 (1970). · Zbl 0212.17102
[3] Hansen, E.: Interval arithmetic in matrix computations, Part I. SIAM J. Numer. Anal.2, 308 to 320 (1965). · Zbl 0135.37303
[4] Hansen, E., Smith, R.: Interval arithmetic in matrix computations, Part II. SIAM J. Numer. Anal.4, 1–9 (1967). · Zbl 0209.46601
[5] Hansen, R.: On the solution of linear algebraic equations with interval coefficients. Linear Algebra and Appl.2, 153–165 (1969). · Zbl 0185.40201
[6] Hansen, E.: The centered form. Topics in Interval Analysis (Hansen, E., ed.), pp. 102–106. Oxford U. Press 1969a.
[7] Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing4, 181–201 (1969). · Zbl 0187.10001
[8] Moore, R. E.: Interval arithmetic and automatic error analysis in digital computing. Applied Mathematics and Statistics Lab. Report 25, Stanford University (1962).
[9] Moore, R. E.: Interval Analysis. Englewood Cliffs, N. J.: Prentice-Hall 1966. · Zbl 0176.13301
[10] Nickel, K.: On the Newton method in interval analysis. MRC Tech. Rept. No. 1136, University of Wisconsin, Madison (1971). · Zbl 0228.76060
[11] Skelboe, S.: Computation of rational interval functions. BIT, Bind 14, Hefte Nr. 1, 87–95 (1974). · Zbl 0274.65015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.