zbMATH — the first resource for mathematics

On the convergence of Wilson’s nonconforming element for solving the elastic problems. (English) Zbl 0345.65058

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Full Text: DOI
[1] Ciarlet, P.G., Conforming and nonconforming finite element methods for solving the plate problem, () · Zbl 0285.65072
[2] P.G. Ciarlet and P.-A. Raviart, La méthode des éléments finis pour les problèmes aux limites elliptiques. (To appear).
[3] P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem. (To appear in R.A.I.R.O.). · Zbl 0319.73042
[4] Nitsche, J., Convergence of nonconforming elements, () · Zbl 0221.65092
[5] Argyris, J.H.; Fried, I.; Scharpf, D.W., The TUBA family of plate elements for the matrix displacement method, Aeron. J. royal aero. soc., 72, 701-709, (1968)
[6] Irons, B.M.; Razzaque, A., Experience with the patch test for convergence of finite elements, (), 557-587
[7] Strang, G., Variational crimes in the finite element method, (), 689-710
[8] Wilson, E.L.; Taylor, R.L.; Doherty, W.P.; Ghaboussi, J., Incompatible displacement models, ()
[9] Nečas, J., LES méthodes directes en théorie des équations elliptiques, (1967), Masson Paris · Zbl 1225.35003
[10] Landau, L.; Lifchitz, E., Théorie de l’élasticité, (1967), Mir Moscow · Zbl 0166.43101
[11] Zienkiewicz, O.C., The finite element method in engineering science, (1971), McGraw-Hill London · Zbl 0237.73071
[12] Strang, G.; Fix, G., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs · Zbl 0278.65116
[13] Ciarlet, P.G.; Raviart, P.-A., General Lagrange and Hermite interpolation in \(R\^{}\{n\}\) with applications to finite element methods, Arch. rational mech. anal., 46, 177-199, (1972) · Zbl 0243.41004
[14] Aubin, J.P., Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods, Ann. scuola norm. sup. Pisa, 21, 599-637, (1967) · Zbl 0276.65052
[15] Nitsche, J., Ein kriterium für die quasi-optimalität des ritzschen verfahrens, Numer. math., 11, 346-348, (1968) · Zbl 0175.45801
[16] Bramble, J.H.; Hilbert, S.H., Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. math., 16, 362-369, (1971) · Zbl 0214.41405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.