×

zbMATH — the first resource for mathematics

Notwendige und hinreichende Bedingungen für (strenge) Konvexität, Pseudokonvexität und (strenge) Quasikonvexität einer quadratischen Funktion bezüglich einer konvexen Menge. (German) Zbl 0345.90032

MSC:
90C20 Quadratic programming
90C25 Convex programming
26A51 Convexity of real functions in one variable, generalizations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Arrow K. J., Enthoven A. C.: Quasi-concave programming. Econometrica 29 (1961), 779-800. · Zbl 0104.14302
[2] Cottle R. W.: On the convexity of quadratic forms over convex sets. Operations Research 15 (1967), 170-172. · Zbl 0152.20801
[3] Cottle R. W., Ferland J. A. : Matrix theoretic criteria for the quasi-convexity and pseudo-convexity of quadratic functions. Linear Algebra and its Applications 5 (1972), 123- 136. · Zbl 0241.90045
[4] Cottle R. W., Ferland J. A.: On pseudo-convex functions of nonnegative variables. Mathematical Programming 1 (1971), 95- 101. · Zbl 0227.90040
[5] Elster K. H.: Ergebnisse und Probleme der nichtlinearen Optimierung. Wiss. Z. d. Technischen Hochschule Ilmenau 15 (1969), 37-61. · Zbl 0181.22801
[6] Ferland J. A.: Quasi-convex and pseudo-convex functions on solid convex sets. Techn. Rept. No 71884, Operations Research House, Stanford University, Stanford, Calif.
[7] Ferland J. A.: A maximal domains of quasi-convexity and pseudo-convexity for quadratic functions. Mathematical Programming 3 (1972), 178-192. · Zbl 0256.90040
[8] Ferland J. A.: Mathematical programming problems with quasi-convex objective functions. Mathematical Programming 3 (1972), 296 - 301. · Zbl 0256.90046
[9] Gerencsér L.: On a close relation between quasiconvex and convex functions and related investigations. Math. Operationsforsch. u. Statist. 4(1973), 197-182.
[10] Keri K.: An examination of nonnegativity and quasiconvexity conditions of quadratic forms on the nonnegative orthant. Studia Scientarum Mathematicarum Hungarica 7 (1972), 11 - 20. · Zbl 0265.90035
[11] Mangasarian O. L.: Pseudo-convex functions. SIAM Journal on Control 3 (1965), 281 - 290. · Zbl 0138.15702
[12] Mangasarian O. L.: Convexity, pseudo-convexity and quasiconvexity of composite functions. Cahiers du Centre d’Etudes de Recherche Opérationelle 12 (1970), 114- 122. · Zbl 0218.90042
[13] Martos B.: Subdefinit matrices and quadratic forms. SIAM Journal on Applied Mathematics 17 (1969), 1215-1223. · Zbl 0186.34201
[14] Martos B.: Quadratic programming with a quasi-convex objective function. Operations Research 19 (1971), 87 - 97. · Zbl 0221.90038
[15] Martos B.: Quasi-convexity and quasi-monocity in nonlinear programming. Studia Scientarium Mathematicarum Hungarica 2 (1967), 265 - 273. · Zbl 0178.22901
[16] Orden A.: Minimization of indefinit quadratic functions with linear constraints. Recent advances in mathematical programming. Graves, R. L., Wolfe, P. (ed.) New York 1963.
[17] Ponstein J.: Seven kinds of convexity. SIAM Review 9 (1967), 115-119. · Zbl 0164.06501
[18] Schaible S.: Beträge zur quasikonvexen Programmierung. Dissertation, Köln 1971
[19] Schaible S.: Quasi-concave, strictly quasiconcave and pseudo-concave functions. Operations Research Verfahren, Henn, R., Künzi, H. P., Schubert, H. (ed.), Meiseuheim 1973. · Zbl 0307.26010
[20] Stoer J., Witzgall Ch.: Convexity and Optimization in Finite Dimensions I. Springer-Verlag, Berlin-Heidelberg-New York 1970. · Zbl 0203.52203
[21] Swarup K.: Programming with indefinit quadratic functions with linear constraints. Cahiers du Centre d’Etudes de Recherche Opérationelle 8 (1966), 132-136. · Zbl 0141.17505
[22] Swarup K.: Indefinit quadratic programming with nonlinear constraints. ZAMM 47 (1967), 411-413. · Zbl 0171.18105
[23] Swarup K.: Indefinit quadratic programming with a quadratic constraint. Ekonom.-Mat. Obzor 4 (1968), 69-75.
[24] Tammer K.: Über eine Klasse von verallgemeinerten quadratischen Optimierungsproblemen mit nichtkonvexer Zielfunktion, die auf quasi- bzw. pseudokonvexe Probleme zurückführbar sind. Aplikace matematiky, eingereicht 1974. · Zbl 0373.90055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.