Periodic and traveling wave solutions to Volterra-Lotka equations with diffusion. (English) Zbl 0345.92007


92D25 Population dynamics (general)
35K55 Nonlinear parabolic equations
Full Text: DOI


[1] Hadeler, K. P., U. an der Heiden and F. Rothe. 1974. ”Nonhomogeneous Spatial Distribution of Populations.”J. Math. Biol.,1, 165–176. · Zbl 0315.92012
[2] Hirsch, M. W. and S. Smale. 1974.Differential Equations, Dynamical Systems and Linear Algebra. New York: Academic Press. · Zbl 0309.34001
[3] Kolmogorov, A. N., I. Petrovsky and N. Piskunov. 1937. ”Etude de l’equation de la chaleur avec croissance ... et son application à un probleme biologique.”Bull. U. État Moscou,6, 1–25.
[4] Kopell, N. and L. N. Howard. 1973. ”Plane Wave Solutions to Reaction-Diffusion Equations.”Stud. Appl. Math.,52, 291–328. · Zbl 0305.35081
[5] Montroll, E. W. 1968. ”Lectures on Nonlinear Rate Equations, Especially Those with Quadratic Nonlinearities.” In:Lectures in Theoretical Physics, 10A. (Ed. A. Barut and W. Brittin) pp. 531–573. New York: Gordon and Breach.
[6] Rinzel, J. and J. B. Keller, 1973. ”Travelling Wave Solutions of a Nerve Conduction Equation.”Biophys. J.,13, 1313–1337.
[7] Rosen, G. 1975. ”Solutions to Systems of Nonlinear Reaction-Diffusion Equations.”Bull. Math. Biol. 37, 277–289. · Zbl 0314.92002
[8] Stakgold, I., D. D. Joseph and D. H. Sattinger, eds. 1973.Nonlinear Problems in the Physical Sciences and Biology. New York: Springer-Verlag. · Zbl 0254.00025
[9] Williams, S. A. and P. L. Chow. 1976. ”Nonlinear Reaction-Diffusion Equations for Interacting Populations,”J. Math. Analy. Appl, to appear.
[10] Zubov, V. 1964.Methods of A. M. Liapunov and Their Applications. Gronigen: Noordhoff.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.