zbMATH — the first resource for mathematics

A survey of design methods for failure detection in dynamic systems. (English) Zbl 0345.93067

93E10 Estimation and detection in stochastic control theory
60G35 Signal detection and filtering (aspects of stochastic processes)
Full Text: DOI
[1] Fagin, S.L., Recursive linear regression theory, optimal filter theory, and error analyses of optimal systems, IEEE int. conv. record, 216-240, (March 1964)
[2] Tarn, T.J.; Zaborszky, J., A practical nondiverging filter, Aiaa jl, 8, 1127-1133, (1970) · Zbl 0208.20402
[3] Jazwinski, A.H., Limited memory optimal filtering, IEEE trans. aut. control, 13, 558-563, (1968) · Zbl 0186.23501
[4] Beard, R.V., (), Rept. MVT-71-1
[5] Jones, H.L., Failure detection in linear systems, ()
[6] Gilmore, J.; McKern, R., A redundant strapdown inertial system mechanization—SIRU, ()
[7] Pejsa, A.J., Optimum orientation and accuracy of redundant sensor arrays, (1971), Honeywell Aerospace Div Minneapolis, MN
[8] Ephgrave, J.T., (), Aerospace Report No. TOR-0066 (5306)-10
[9] \scR. B. Broen: A nonlinear voter-estimator for redundant systems Proc. 1974 IEEE Conf. on Decision and Control, Phoenix, Arizona pp. 743-748
[10] Athans, M.; Willner, D., A practical scheme for adaptive aircraft flight control systems, ()
[11] Lainiotis, D.G., Joint detection, estimation, and system identification, Inform. control, 19, 75-92, (Aug. 1971)
[12] Montgomery, R.C.; Caglayan, A.K., A self-reorganizing digital flight control system for aircraft, ()
[13] Montgomery, R.C.; Price, D.B., Management of analytical redundancy in digital flight control systems for aircraft, ()
[14] Buxbaum, P.J.; Haddad, R.A., Recursive optimal estimation for a class of Nongaussian processes, ()
[15] Willsky, A.S.; Deyst, J.J.; Crawford, B.S., Adaptive filtering and self-test methods for failure detection and compensation, ()
[16] Willsky, A.S.; Deyst, J.J.; Crawford, B.S., Two self-test methods applied to an inertial system problem, J. spacecr. rockets, 12, No. 7, 434-437, (July 1975)
[17] Pierce, B.D.; Sworder, D.D., Bayes and minimax controllers for a linear system with stochastic jump parameters, IEEE trans. aut. control, AC-16, No. 4, 300-307, (Aug. 1971)
[18] Sworder, D.D., Bayes’ controllers with memory for a linear system with jump parameters, IEEE trans. aut. control, AC-17, 118-121, (Feb. 1972)
[19] Sworder, D.D.; Robinson, V.G., Feedback regulators for jump parameter systems with state and control dependent transition rates, IEEE trans. aut. control, AC-18, No. 4, 355-360, (Aug. 1973)
[20] Robinson, V.G.; Sworder, D.D., A computational algorithm for design of regulators for linear jump parameter systems, IEEE trans. aut. control, AC-19, 47-49, (Feb. 1974)
[21] Ratner, R.S.; Luenberger, D.G., Performance-adaptive renewal policies for linear systems, IEEE trans. aut. control, AC-14, No. 4, 344-351, (Aug. 1969)
[22] Davis, M.H.A., The application of nonlinear filtering to fault detection in linear systems, IEEE trans. aut. control, AC-20, No. 2, 257-259, (April 1975)
[23] McGarty, T.P., State estimation with faulty measurements: an application of Bayesian outlier rejection, ()
[24] Chien, T.T., (), Rept. T-560
[25] Kerr, T.H., A two ellipsoid overlap test for real time failure detection and isolation by confidence regions, () · Zbl 0339.62072
[26] \scR. K. Mehra and \scJ. Peschon: An innovations approach to fault detection and diagnosis in dynamic systems. Automatica\bf7, 637-640.
[27] Merrill, H.M., Bad data suppression in state estimation, with applications to problems in power, ()
[28] Willsky, A.S.; Jones, H.L., A generalized likelihood ratio approach to state estimation in linear systems subject to abrupt changes, ()
[29] Willsky, A.S.; Jones, H.L., A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems, IEEE trans. aut. control, AC-21, 108-112, (Feb. 1976)
[30] McAulay, R.J.; Denlinger, E., A decision-directed adaptive tracker, IEEE trans. aero. and elec. sys., AES-9, 229-236, (March 1973)
[31] Deyst, J.J.; Deckert, J.C., RCS jet failure identification for the space shuttle, ()
[32] Sanyal, P.; Shen, C.N., Bayes’ decision rule for rapid detection and adaptive estimation scheme with space applications, IEEE trans. aut. control, AC-19, 228-231, (June 1974)
[33] Jazwinski, A.H., ()
[34] Clark, R.N.; Fosth, D.C.; Walton, V.M., Detecting instrument malfunctions in control systems, IEEE trnas. aerospace electronic systems, AES-11, No. 4, 465-473, (July 1975)
[35] Athans, M.; Dunn, K.-P.; Greene, C.S.; Lee, W.H.; Sandell, N.R.; Segall, I.; Willsky, A.S., The stochastic control of the F-8C aircraft using the multiple model adaptive control (MMAC) method, ()
[36] Gustafson, D.E.; Willsky, A.S.; Wang, J.-Y., (), Rept. No. R-920
[37] Sworder, D.D., Feedback control of a class of linear systems with jump parameters, IEEE trans. aut. control, AC-14, No. 1, 9-14, (Feb. 1969)
[38] Chow, E.; Dunn, K.-P.; Willsky, A.S., Research status report to NASA langley research center: a dual-mode generalized likelihood ratio approach to self-reorganizing digital flight control system design, (April 1975), M.I.T. Electronic Systems Laboratory Cambridge, MA
[39] Boel, R.; Varaiya, R.; Wong, E., Martingales on jump processes I: representation results, and II: applications, SIAM J. control, 13, 999-1061, (August 1975)
[40] Deyst, J.J., A design approach to highly reliable flight control systems, () · Zbl 0271.93027
[41] Van Trees, H.L., ()
[42] Wernersson, Åke, On Bayesian estimators for discrete time linear systems with Markovian parameters, () · Zbl 0347.93034
[43] Bueno, R.; Chow, E.; Gershwin, S.B.; Willsky, A.S., Research status report to NASA langley research center: a dual-mode generalized likelihood ratio approach to self-reorganizing digital flight control system design, ()
[44] Van Trees, H.L., ()
[45] Doolin, B.F., Reliability issues for future aircraft, ()
[46] Taylor, L., Active control aircraft problems, ()
[47] Meyer, G.; Cicolani, L., A formal structure for advanced automatic flight-control systems, Nasa tn d-7940, (May (1975))
[48] Zyweitz, Chr.; Schneider, B., ()
[49] Segall, A., A martingale approach to modeling, estimation and detection of jump processes, ()
[50] Snyder, D.L., ()
[51] Athans, M.; Whiting, R.H.; Gruber, M., A suboptimal estimation algorithm with probabilistic editing for false measurements with applications to target tracking with wake phenomena, () · Zbl 0349.93047
[52] Newbold, P.M.; Ho, Y.-C., Detection of changes in the characteristics of a Gauss-Markov process, IEEE trans. aerospace elec. sys., AES-4, No. 5, 707-718, (Sept. 1968)
[53] Middleton, D.; Esposito, R., Simultaneous optimum detection and estimation of signals in noise, IEEE trans. inf. th., Vol. IT-14, No. 3, 434-444, (May 1968)
[54] Nahi, N.E., Optimal recursive estimation with uncertain observation, IEEE trans. inf. th., IT-15, No. 4, 457-462, (July 1969)
[55] Belletrutti, J.J.; MacFarlane, A.G.J., Characteristic loci techniques in multivariable-control-system design, (), 1291-1297, No. 9 · Zbl 0266.93041
[56] \scO. A. Solheim: Some integrity problems in optimal control systems. AGARD Conference Proceedings, No. 137.
[57] Wong, P.K.; Athans, M., Closed-loop structural stability for linear-quadratic optimal systems, () · Zbl 0346.93032
[58] Safonov, M.G.; Athans, M., Gain and phase margin for multiloop LQG regulators, () · Zbl 0356.93016
[59] Deckert, J.C.; Desai, M.N.; Deyst, J.J.; Willsky, A.S., Dual redundant sensor FDI techniques applied to the NASA F8C DFBW aircraft, ()
[60] \scJ. C. Deckert, M. N. Desai, J. J. Deyst and \scA. S. Willsky: A dual-redundant sensor failure detection algorithm for the F8 aircraft. 1975 IEEE Conf. Decision and Control; submitted to IEEE Trans. Aut. Control.
[61] Hancock, J.C.; Wintz, P.A., ()
[62] Schweppe, F.C.; Handschin, E.J., Static state estimation in electric power systems, (), 972-982, No. 7
[63] Peterson, D.W., Hypothesis, estimation, and validation of dynamic social models—energy demand modeling, ()
[64] Handschin, E.; Schweppe, F.C.; Kohlas, J.; Fiechter, A., Bad data analysis for power system state estimation, ()
[65] Chow, E.Y., Analytical studies of the generalized likelihood ratio technique for failure detection, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.