×

zbMATH — the first resource for mathematics

The rationality of the Fourier coefficients of certain Eisenstein series on tube domains. I. (English) Zbl 0346.10014

MSC:
11F27 Theta series; Weil representation; theta correspondences
32N10 Automorphic forms in several complex variables
32N15 Automorphic functions in symmetric domains
20G30 Linear algebraic groups over global fields and their integers
17C10 Structure theory for Jordan algebras
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A.A. Albert : Structure of Algebras . Amer. Math. Soc. Colloq. Publ., Vol. 24, Amer. Math. Soc., New York, 1939. · Zbl 0023.19901
[2] A.A. Albert : and N. Jacobson : On reduced exceptional simple Jordan algebras . Ann. of Math. (2) 66 (1957) 400-417. · Zbl 0079.04604 · doi:10.2307/1969898
[3] W.L. Baily, Jr. : On Hensel’s lemma and exponential sums, in Global Analysis, a volume of assorted articles dedicated to K. Kodaira , Univ. of Tokyo Press, 1969. · Zbl 0193.49201
[4] W.L. Baily,Jr. : Eisenstein series on tube domains, in Problems in Analysis: A Symposium in Honor of S. Bochner . Princeton Univ. Press, 1970. · Zbl 0211.10603
[5] W.L. Baily, Jr. : An exceptional arithmetic group and its Eisenstein series . Ann. of Math., 91 (1970) 512-549. · Zbl 0202.07901 · doi:10.2307/1970636
[6] W.L. Baily, Jr. : On the Fourier coefficients of certain Eisenstein series on the adele group, in Number Theory, in honor of Y. Akizuki , Kinokuniya, Tokyo, 1973. · Zbl 0283.10017
[7] W.L. Baily, Jr. and A. Borel : Compactification of arithmetic quotients of bounded symmetric domains . Ann. of Math., 84 (1966) 442-528. · Zbl 0154.08602 · doi:10.2307/1970457
[8] A. Borel and J. Tits : Groupes réductifs . Publ. I.H.E.S., 27 (1965) 55-150. · Zbl 0145.17402 · doi:10.1007/BF02684375 · numdam:PMIHES_1965__27__55_0 · eudml:103858
[9] F. Bruhat and J. Tits : Théorie des Groupes-Groupes algebriques simples sur un corps local: cohomologie galoisienne, decompositions d’Iwasawa et de Cartan . C. R. Acad. Sc. Paris, 263 (1966) Series A, 867-869. · Zbl 0263.14015
[10] B.A. Fuchs : Special Chapters of the Theory of Analytic Functions of Several Complex Variables . Translations of Mathematical Monographs, Vol. 14, Amer. Math. Soc., New York, 1965. · Zbl 0146.30802
[11] U. Hirzebruch : Über Jordan-Algebren und beschränkte symmetrische Gebiete . Math. Z., 94 (1966) 74-98. · Zbl 0161.03602 · doi:10.1007/BF01111668 · eudml:170634
[12] N. Jacobson : Structure and the Representations of Jordan Algebras . Amer. Math. Soc. Colloq. Publ., Vol. 39, Amer. Math. Soc., New York, 1968. · Zbl 0218.17010 · www.ams.org
[13] A. Korányi and J. Wolf : Realization of hermitian symmetric spaces as generalized half-plane . Ann. of Math., 81 (1965) 265-288. · Zbl 0137.27402 · doi:10.2307/1970616
[14] I.I. Pyateckii-Shapiro : Géométrie des Domaines Classiques et Théorie des Fonctions Automorphes , Dunod, Paris, 1966. · Zbl 0142.05101
[15] C.L. Siegel : Über die analytische Theorie der quadratischen Formen III . Ann. of Math., 38 (1937) 212-291. · Zbl 0016.01205 · doi:10.2307/1968520
[16] C.L. Siegel : Einführung in die Theorie der Modulfunktionen n-ten Grades . Math. Ann., 116 (1939) 617-657. · Zbl 0021.20302 · doi:10.1007/BF01597381 · eudml:160024
[17] C.L. Siegel : Lectures on Riemann Matrices . Tata Inst. of Fundamental Research, Bombay, 1963. · Zbl 0249.14014
[18] J. Tits : Théorème de Bruhat et sous-groupes paraboliques . C. R. Acad. Sci. Paris, 254 (1962) 2910-2912. · Zbl 0105.02201
[19] L.-C. Tsao : On Fourier coefficients of Eisenstein series . Bull. A.M.S., 79 (1973) 1064-1068. · Zbl 0287.10018 · doi:10.1090/S0002-9904-1973-13333-6
[20] E.B. Vinberg : The structure of the group of automorphisms of a homogeneous convex cone . Trans. Moscow Math. Soc., 13 (1965). · Zbl 0311.17008
[21] A. Weil : Adeles and Algebraic Groups. Notes by M. Demazure and T. Ono , Inst. for Adv. Study, Princeton, 1961.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.