×

zbMATH — the first resource for mathematics

The minimal orbit in a simple Lie algebra and its associated maximal ideal. (English) Zbl 0346.17008

MSC:
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] L. AUSLANDER and B. KOSTANT , Polarization and Unitary Representations of Solvable Lie Groups (Inv. Math., Vol. 14, 1971 , pp.255-354). MR 45 #2092 | Zbl 0233.22005 · Zbl 0233.22005 · doi:10.1007/BF01389744 · eudml:142116
[2] P. BERNAT , N. CONZE et coll., Représentations des groupes de Lie résolubles , Monographies de la Société Mathématique de France, Dunod, Paris, 1972 . MR 56 #3183 | Zbl 0248.22012 · Zbl 0248.22012
[3] W. BORHO (to appear).
[4] W. BORHO und H. KRAFT , Uber die Gelfand-Kirillov-Dimension Math. Annalen (to appear). Zbl 0306.17005 · Zbl 0306.17005 · doi:10.1007/BF01354525 · eudml:162801
[5] W. BORHO , P. GABRIEL und R. RENTSCHLER , Primideale in Einhüllenden auflösbarer Lie-algebra (Lecture Notes in Math., Vol. 357, Springer Verlag, New York, 1973 ). MR 51 #12965 | Zbl 0293.17005 · Zbl 0293.17005
[6] N. BOURBAKI , Groupes et algèbres de Lie , Chap. IV-VI (Act. Sc. Ind., n^\circ 1337, Hermann, Paris, 1968 ). MR 39 #1590 · Zbl 0186.33001
[7] N. CONZE , Algèbres d’opérateurs différentiels et quotients des algèbres enveloppantes (Bull. Soc. Math. France, Tome 102, 1974 , pp. 379-415). Numdam | MR 51 #10414 | Zbl 0298.17012 · Zbl 0298.17012 · numdam:BSMF_1974__102__379_0 · eudml:87235
[8] N. CONZE et J. DIXMIER , Idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple (Bull. Sc. Math., Vol. 96, 1972 , pp. 339-351). MR 48 #356 | Zbl 0246.17009 · Zbl 0246.17009
[9] J. DIXMIER , Sur les représentations unitaires des groupes de Lie nilpotents IV (Canad. J. Math., Vol. 11, 1959 , pp. 321-344). MR 21 #5693 | Zbl 0125.06802 · Zbl 0125.06802 · doi:10.4153/CJM-1959-034-8
[10] J. DIXMIER , Idéaux primitifs complètement premiers dans l’algèbre enveloppante de sl (3, C) In : Non-commutative Harmonic Analysis, Lecture Notes in Math., Vol. 466, Springer-Verlag, New York, 1975 . MR 52 #13962 | Zbl 0307.17005 · Zbl 0307.17005
[11] J. DIXMIER , Algèbres enveloppantes (Cahiers scientifiques, Vol. 37, Gauthier-Villars, Paris, 1974 ). MR 58 #16803a | Zbl 0308.17007 · Zbl 0308.17007
[12] E. B. DYNKIN , Semisimple Subalgebras of Semisimple Lie Algebras [Mat. Sbornik N. S., Vol. 30 (72), 1952 , pp. 349-463 (Eng. transl. Amer. Math. Soc. Transl., Vol. 6, 1957 , p.p 111-244)]. MR 13,904c | Zbl 0077.03404 · Zbl 0077.03404
[13] E. B. DYNKIN , Maximal Subgroups of the Classical Groups [Trudy Moskov. Mat. Obšč, Vol. 1, 1952 , pp. 39-166 (Eng. Transl. Amer. Math. Soc. Transl., Vol. 6, 1957 , pp. 245-378). Zbl 0077.03403 · Zbl 0077.03403
[14] A. G. ELASHVILI , Canonical Form and Stationary Subalgebras of Points of General Position for Simple Linear Lie Groups [Funkt. Analiz i Ego Prilozhen., Vol. 6, 1972 , pp. 51-62 (Eng. Transl. Funct. Anal. appl., Vol. 6, 1972 , pp. 44-53)]. Zbl 0252.22015 · Zbl 0252.22015 · doi:10.1007/BF01075509
[15] I. M. GELFAND et A. A. KIRILLOV , Sur les corps liés aux algèbres enveloppantes des algèbres de Lie (Inst. Hautes Études Scient., Publ. Math., n^\circ 31, 1966 , pp. 5-19). Numdam | MR 34 #7731 | Zbl 0144.02104 · Zbl 0144.02104 · doi:10.1007/BF02684800 · numdam:PMIHES_1966__31__5_0 · eudml:103872
[16] [16 H. JACOBSON , Lie algebras, Interscience Tracts in Pure and Applied Mathematics , n^\circ 10, Interscience, New York, 1962 . Zbl 0121.27504 · Zbl 0121.27504
[17] A. JOSEPH , Derivations of Lie Brackets and Canonical Quantization (Commun. math. phys., Vol. 17. 1970 , pp. 210-232). Article | MR 45 #3015 | Zbl 0194.58402 · Zbl 0194.58402 · doi:10.1007/BF01647091 · minidml.mathdoc.fr
[18] A. JOSEPH , Gelfand-Kirillov Dimension for Algebras Associated with the Weyl Algebra (Ann. Inst, H. Poincaré, Vol. 17, 1972 , p. 325). Numdam | MR 49 #2868 | Zbl 0287.16011 · Zbl 0287.16011 · numdam:AIHPA_1972__17_4_325_0 · eudml:75761
[19] A. JOSEPH , A Generalization of the Gelfand-Kirillov Conjecture , Tel-Aviv Univ. Preprint 1973 , TAUP-385-73.
[20] A. JOSEPH , Minimal Realizations and Spectrum Generating Algebras (Commun. math. phys., Vol. 36, 1974 , pp. 325-338). Article | MR 49 #6795 | Zbl 0285.17007 · Zbl 0285.17007 · doi:10.1007/BF01646204 · minidml.mathdoc.fr
[21] A. JOSEPH , Sur les algèbres de Weyl (Litheographed Lecture Notes, Inst. Hautes Études Scient., 1974 ).
[22] A. JOSEPH , The Gelfand-Kirillov Conjecture in Classical Mechanics and Quantization , Inst. Hautes Études Scient., preprint, 1974 .
[23] V. G. KAC , Simple Irreducible Graded Lie Algebras of Finite Growth [Izv. Akad. Nauk S.S.S.R., Ser. Mat., Vol. 32, 1968 , n^\circ 6 (Eng. Transl. Math. U.S.S.R., Izvectija, Vol. 2, 1968 , pp. 1271-1311)]. MR 41 #4590 | Zbl 0222.17007 · Zbl 0222.17007 · doi:10.1070/IM1968v002n06ABEH000729
[24] F. I. KARPEVELIČ , On Non-Semisimple Maximal Subalgebras of Semisimple Lie Algebras (Dokl. Akad. Nauk S.S.S.R. (N.S.), Vol. 76, 1951 , pp. 775-778, Russian). Zbl 0044.26303 · Zbl 0044.26303
[25] B. KOSTANT , The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group (Amer. J. Math., Vol. 81, 1959 , pp. 973-1032). MR 22 #5693 | Zbl 0099.25603 · Zbl 0099.25603 · doi:10.2307/2372999
[26] B. KOSTANT , Lie Group Representations on Polynomial Rings (Amer. J. Math., Vol. 85, 1963 , pp. 327-404). MR 28 #1252 | Zbl 0124.26802 · Zbl 0124.26802 · doi:10.2307/2373130
[27] B. KOSTANT , Quantization and Unitary Representations (Lecture Notes in Math., Vol. 170, Springer-Verlag, New York, 1970 , pp. 87-208). MR 45 #3638 | Zbl 0223.53028 · Zbl 0223.53028
[28] B. KOSTANT , Private communication.
[29] M. LORENTE and B. GRUBER , Classification of Semisimple Subalgebras of Simple Lie Algebras (J. Math. Phys., Vol. 13, 1972 , pp. 1639-1663). MR 46 #9241 | Zbl 0241.17006 · Zbl 0241.17006 · doi:10.1063/1.1665888
[30] H. OZEKI and M. WAKIMOTO , On Polarizations of Certain Homogeneous Spaces (Hiroshima Math. J., Vol. 2, 1972 , pp. 445-482). MR 49 #5236a | Zbl 0267.22011 · Zbl 0267.22011
[31] W. SCHMID , Die Randwerte Homomorpher Funktionen auf Hermitesch Symmetrischen Raumen (Inv. Math., Vol. 9, 1969 / 1970 , pp. 61-80, footnote p. 79). MR 41 #3806 | Zbl 0219.32013 · Zbl 0219.32013 · doi:10.1007/BF01389889 · eudml:141996
[32] M. VERGNE , La structure de Poisson sur l’algèbre symétrique d’une algèbre de Lie nilpotente (Bull. Soc. math. France, Tome 100, 1972 , pp. 301-355). Numdam | MR 52 #657 | Zbl 0256.17002 · Zbl 0256.17002 · numdam:BSMF_1972__100__301_0 · eudml:87188
[33] J. TITS , Une remarque sur la structure des algèbres de Lie semi-simple complexes (Proc. Konninkl. Nederl. Akad. Wetenschappen, Series A, Vol. 63, 1960 , pp. 48-53). MR 22 #1633 | Zbl 0093.04001 · Zbl 0093.04001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.