×

zbMATH — the first resource for mathematics

Intrinsic distances, measures and geometric function theory. (English) Zbl 0346.32031

MSC:
32F45 Invariant metrics and pseudodistances in several complex variables
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32H25 Picard-type theorems and generalizations for several complex variables
30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. R. Ahern and Robert Schneider, Isometries of \?^{\infty }, Duke Math. J. 42 (1975), 321 – 326. · Zbl 0354.32023
[2] Lars V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359 – 364. · Zbl 0018.41002
[3] Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. · Zbl 0272.30012
[4] Lars V. Ahlfors, Curvature properties of Teichmüller’s space, J. Analyse Math. 9 (1961/1962), 161 – 176. · Zbl 0148.31201
[5] Aldo Andreotti and Wilhelm Stoll, Extension of holomorphic maps, Ann. of Math. (2) 72 (1960), 312 – 349. · Zbl 0095.28101
[6] James Ax, Some topics in differential algebraic geometry. II. On the zerosof theta functions, Amer. J. Math. 94 (1972), 1205 – 1213. · Zbl 0266.14018
[7] W. L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442 – 528. · Zbl 0154.08602
[8] Theodore J. Barth, The Kobayashi distance induces the standard topology, Proc. Amer. Math. Soc. 35 (1972), 439 – 441. · Zbl 0259.32007
[9] Theodore J. Barth, Taut and tight complex manifolds, Proc. Amer. Math. Soc. 24 (1970), 429 – 431. · Zbl 0191.09403
[10] Theodore J. Barth, Normality domains for families of holomorphic maps, Math. Ann. 190 (1971), 293 – 297. · Zbl 0198.42401
[11] Theodore J. Barth, Families of holomorphic maps into Riemann surfaces, Trans. Amer. Math. Soc. 207 (1975), 175 – 187. · Zbl 0278.32003
[12] Lipman Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257 – 300. · Zbl 0257.32012
[13] A. Bloch, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires, Ann. Sci. École Norm. Sup. (3) 43 (1926), 309 – 362 (French). · JFM 52.0326.01
[14] Salomon Bochner and Deane Montgomery, Groups on analytic manifolds, Ann. of Math. (2) 48 (1947), 659 – 669. · Zbl 0030.07501
[15] Salomon Bochner and Deane Montgomery, Groups of differentiable and real or complex analytic transformations, Ann. of Math. (2) 46 (1945), 685 – 694. · Zbl 0061.04406
[16] Armand Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, J. Differential Geometry 6 (1972), 543 – 560. Collection of articles dedicated to S. S. Chern and D. C. Spencer on their sixtieth birthdays. · Zbl 0249.32018
[17] Armand Borel and Raghavan Narasimhan, Uniqueness conditions for certain holomorphic mappings, Invent. Math. 2 (1967), 247 – 255. · Zbl 0145.31802
[18] Emile Borel, Sur les zéros des fonctions entières, Acta Math. 20 (1897), no. 1, 357 – 396 (French). · JFM 28.0360.01
[19] H. J. Bremermann, Holomorphic continuation of the kernel function and the Bergman metric in several complex variables, Lectures on functions of a complex variable, The University of Michigal Press, Ann Arbor, 1955, pp. 349 – 383. · Zbl 0067.30704
[20] Herbert Busemann, The geometry of geodesics, Academic Press Inc., New York, N. Y., 1955. · Zbl 0068.36701
[21] Eugenio Calabi, On Kähler manifolds with vanishing canonical class, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 78 – 89. · Zbl 0080.15002
[22] L. Andrew Campbell and Roy H. Ogawa, On preserving the Kobayashi pseudodistance, Nagoya Math. J. 57 (1975), 37 – 47. · Zbl 0312.32014
[23] C. Carathéodory, Über die Abbildungen, die durch Systeme von analytischen Funktionen von mehreren Veränderlichen erzeugt werden, Math. Z. 34 (1932), no. 1, 758 – 792 (German). · Zbl 0003.40702
[24] James A. Carlson, Some degeneracy theorems for entire functions with values in an algebraic variety, Trans. Amer. Math. Soc. 168 (1972), 273 – 301. · Zbl 0246.32023
[25] James Carlson and Phillip Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math. (2) 95 (1972), 557 – 584. · Zbl 0248.32018
[26] Henri Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Ann. Sci. École Norm. Sup. (3) 45 (1928), 255 – 346 (French). · JFM 54.0357.06
[27] Henri Cartan, Quotients of complex analytic spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 1 – 15. · Zbl 0154.33603
[28] Henri Cartan, Sur les fonctions de plusieurs variables complexes. L’itération des transformations intérieures d’un domaine borné, Math. Z. 35 (1932), no. 1, 760 – 773 (French). · Zbl 0004.40602
[29] Henri Cartan, Sur les fonctions de \? variables complexes: les transformations du produit topologique de deux domaines bornés, Bull. Soc. Math. France 64 (1936), 37 – 48 (French). · Zbl 0014.40804
[30] Su Shing Chen, Carathéodory distance and convexity with respect to bounded holomorphic functions, Proc. Amer. Math. Soc. 39 (1973), 305 – 307. · Zbl 0265.32012
[31] Shiing-shen Chern, Complex analytic mappings of Riemann surfaces. I, Amer. J. Math. 82 (1960), 323 – 337. · Zbl 0103.30104
[32] Shiing-shen Chern, The integrated form of the first main theorem for complex analytic mappings in several complex variables, Ann. of Math. (2) 71 (1960), 536 – 551. · Zbl 0142.04802
[33] Shiing-shen Chern, On holomorphic mappings of hermitian manifolds of the same dimension., Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 157 – 170.
[34] Shiing Shen Chern, Holomorphic curves in the plane, Differential geometry (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 73 – 94. · Zbl 0249.32016
[35] Shiing Shen Chern and Samuel I. Goldberg, On the volume decreasing property of a class of real harmonic mappings, Amer. J. Math. 97 (1975), 133 – 147. · Zbl 0303.53049
[36] S. S. Chern, Harold I. Levine, and Louis Nirenberg, Intrinsic norms on a complex manifold, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 119 – 139. · Zbl 0202.11603
[37] Michael J. Cowen, Families of negatively curved Hermitian manifolds, Proc. Amer. Math. Soc. 39 (1973), 362 – 366. · Zbl 0263.53043
[38] Klas Diederich, Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann. 187 (1970), 9 – 36 (German). · Zbl 0184.31302
[39] Alexander Dinghas, Ein \?-dimensionales Analogon des Schwarz-Pickschen Flächensatzes für holomorphe Abbildungen der komplexen Einheitskugel in eine Kähler-Mannigfaltigkeit, Festschr. Gedächtnisfeier K. Weierstrass, Westdeutscher Verlag, Cologne, 1966, pp. 477 – 494 (German). · Zbl 0173.09101
[40] Adrien Douady, Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 1 – 95 (French). · Zbl 0146.31103
[41] Jacques Dufresnoy, Théorie nouvelle des familles complexes normales. Applications à l’étude des fonctions algébroïdes, Ann. Sci. École Norm. Sup. (3) 61 (1944), 1 – 44 (French). · Zbl 0061.15205
[42] Clifford J. Earle, On the Carathéodory metric in Teichmüller spaces, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Princeton Univ. Press, Princeton, N.J., 1974, pp. 99 – 103. Ann. of Math. Studies, No. 79.
[43] Clifford J. Earle and Irwin Kra, On holomorphic mappings between Teichmüller spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 107 – 124. · Zbl 0307.32016
[44] Alan Eastwood, A propos des variétés hyperboliques complètes, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), A1071 – A1074 (French). · Zbl 0301.32021
[45] Donald A. Eisenman, Intrinsic measures on complex manifolds and holomorphic mappings, Memoirs of the American Mathematical Society, No. 96, American Mathematical Society, Providence, R.I., 1970. · Zbl 0197.05901
[46] Donald A. Eisenman, Holomorphic mappings into tight manifolds, Bull. Amer. Math. Soc. 76 (1970), 46 – 48. · Zbl 0206.36604
[47] Donald A. Eisenman, Proper holomorphic self-maps of the unit ball, Math. Ann. 190 (1971), 298 – 305. · Zbl 0207.08202
[48] Hirotaka Fujimoto, Extensions of the big Picard’s theorem, Tôhoku Math. J. (2) 24 (1972), 415 – 422. · Zbl 0244.32011
[49] Hirotaka Fujimoto, On holomorphic maps into a taut complex space, Nagoya Math. J. 46 (1972), 49 – 61. · Zbl 0231.32002
[50] Hirotaka Fujimoto, Families of holomorphic maps into the projective space omitting some hyperplanes, J. Math. Soc. Japan 25 (1973), 235 – 249. · Zbl 0253.32012
[51] Hirotaka Fujimoto, On the holomorphic automorphism groups of complex spaces, Nagoya Math. J. 33 (1968), 85 – 106. · Zbl 0165.40403
[52] Hirotaka Fujimoto, On meromorphic maps into the complex projecive space, J. Math. Soc. Japan 26 (1974), 272 – 288. · Zbl 0276.32013
[53] Hirotaka Fujimoto, On families of meromorphic maps into the complex projective space, Nagoya Math. J. 54 (1974), 21 – 51. · Zbl 0267.32005
[54] Ian Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \?\(^{n}\) with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219 – 240. · Zbl 0305.32011
[55] Hans Grauert and Helmut Reckziegel, Hermitesche Metriken und normale Familien holomorpher Abbildungen, Math. Z. 89 (1965), 108 – 125 (German). · Zbl 0135.12503
[56] Hans Grauert and Reinhold Remmert, Plurisubharmonische Funktionen in komplexen Räumen, Math. Z. 65 (1956), 175 – 194 (German). · Zbl 0070.30403
[57] Hans Grauert and Reinhold Remmert, Komplexe Räume, Math. Ann. 136 (1958), 245 – 318 (German). · Zbl 0087.29003
[58] Mark L. Green, Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc. 169 (1972), 89 – 103. · Zbl 0256.32015
[59] Mark L. Green, The complement of the dual of a plane curve and some new hyperbolic manifolds, Value distribution theory (Proc. Tulane Univ. Program, Tulane Univ., New Orleans, 1972-1973) Dekker, New York, 1974, pp. 119 – 131.
[60] Mark Lee Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43 – 75. · Zbl 0301.32022
[61] Mark L. Green, Some examples and counter-examples in value distribution theory for several variables, Compositio Math. 30 (1975), no. 3, 317 – 322. · Zbl 0307.32022
[62] Mark L. Green, Holomorphic mappings to Grassmannians of lines, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 27 – 31.
[63] Phillip A. Griffiths, Holomorphic mapping into canonical algebraic varieties, Ann. of Math. (2) 93 (1971), 439 – 458. · Zbl 0214.48601
[64] Phillip A. Griffiths, Two theorems on extensions of holomorphic mappings, Invent. Math. 14 (1971), 27 – 62. · Zbl 0223.32016
[65] Phillip Griffiths, Some remarks on Nevanlinna theory, Value distribution theory (Proc. Tulane Univ. Program, Tulane Univ., New Orleans, La., 1972 – 1973) Dekker, New York, 1974, pp. 1 – 11.
[66] Phillip A. Griffiths, Holomorphic mappings: Survey of some results and discussion of open problems, Bull. Amer. Math. Soc. 78 (1972), 374 – 382. · Zbl 0239.32017
[67] Phillip A. Griffiths, A Schottky-Landau theorem for holomorphic mappings in several complex variables, Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971) Academic Press, London, 1972, pp. 229 – 243.
[68] Phillip A. Griffiths, Differential geometry and complex analysis, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R. I., 1975, pp. 43 – 64.
[69] Phillip Griffiths and James King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145 – 220. · Zbl 0258.32009
[70] A. Hirschowitz, Domaines de Stein et fonctions holomorphes bornés, Math. Ann. 213 (1975), 185 – 193 (French). · Zbl 0284.32011
[71] F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition. New appendix and translation from the second German edition by R. L. E. Schwarzenberger, with an additional section by A. Borel. Die Grundlehren der Mathematischen Wissenschaften, Band 131, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0138.42001
[72] Heinz Huber, Über analytische Abbildungen Riemannscher Flächen in sich, Comment. Math. Helv. 27 (1953), 1 – 73 (German). · Zbl 0050.08405
[73] Shigeru Iitaka, On \?-dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 356 – 373. · Zbl 0212.53802
[74] Shigeru Iitaka, On algebraic varieties whose universal covering manifolds are complex affine 3-spaces. I, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 147 – 167. · Zbl 0271.14015
[75] Shigeru Iitaka, Projective manifolds whose universal covering manifolds are \?³, Manifolds — Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 353 – 356.
[76] Masahisa Inoue, On surfaces of class \?\?\?\(_{0}\), Manifolds — Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 389 – 392.
[77] Wilhelm Kaup, Hyperbolische komplexe Räume, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 2, 303 – 330 vii (1969) (German, with French summary). · Zbl 0174.13002
[78] W. Kaup, Holomorphe Abbildungen in hyperbolische Räume, Geometry of Homogeneous Bounded Domains (C.I.M.E., 3 Ciclo, Urbino, 1967), Edizioni Cremonese, Rome, 1968, pp. 111 – 123 (German).
[79] W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43 – 70 (German). · Zbl 0157.13401
[80] Wilhelm Kaup, Infinitesimale Transformationsgruppen komplexer Räume, Math. Ann. 160 (1965), 72 – 92 (German). · Zbl 0146.31102
[81] Hans Kerner, Über die Automorphismengruppen kompakter komplexer Räume, Arch. Math. (Basel) 11 (1960), 282 – 288 (German). · Zbl 0112.31205
[82] Norberto Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195 (1972), 149 – 158.
[83] Peter Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc. 76 (1970), 49 – 51. · Zbl 0192.44103
[84] Peter Kiernan, Hyperbolically imbedded spaces and the big Picard theorem, Math. Ann. 204 (1973), 203 – 209. · Zbl 0244.32010
[85] Peter Kiernan, Extensions of holomorphic maps, Trans. Amer. Math. Soc. 172 (1972), 347 – 355. · Zbl 0255.32014
[86] Peter Kiernan, On the compactifications of arithmetic quotients of symmetric spaces, Bull. Amer. Math. Soc. 80 (1974), 109 – 110. · Zbl 0285.32019
[87] Peter Kiernan, Holomorphic extension theorems, Value distribution theory (Proc. Tulane Univ. Program, Univ. Tulane, New Orleans, La., 1972-1973) Dekker, New York, 1974, pp. 97 – 107. · Zbl 0292.32018
[88] Peter J. Kiernan, Quasiconformal mappings and Schwarz’s lemma, Trans. Amer. Math. Soc. 148 (1970), 185 – 197. · Zbl 0195.36403
[89] Peter Kiernan and Shoshichi Kobayashi, Satake compactification and extension of holomorphic mappings, Invent. Math. 16 (1972), 237 – 248. · Zbl 0234.32020
[90] Shoshichi Kobayashi and Peter Kiernan, Holomorphic mappings into projective space with lacunary hyperplanes, Nagoya Math. J. 50 (1973), 199 – 216. · Zbl 0262.32010
[91] Shoshichi Kobayashi, Volume elements, holomorphic mappings and Schwarz’s lemma, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., LaJolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 253 – 260.
[92] Shoshichi Kobayashi, Distance, holomorphic mappings and the Schwarz lemma, J. Math. Soc. Japan 19 (1967), 481 – 485. · Zbl 0158.33202
[93] Shoshichi Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan 19 (1967), 460 – 480. · Zbl 0158.33201
[94] Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. · Zbl 0247.32015
[95] Shoshichi Kobayashi, Some remarks and questions concerning the intrinsic distance, Tôhoku Math. J. (2) 25 (1973), 481 – 486. · Zbl 0281.32017
[96] Shoshichi Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267 – 290. · Zbl 0136.07102
[97] Shoshichi Kobayashi, Negative vector bundles and complex Finsler structures, Nagoya Math. J. 57 (1975), 153 – 166. · Zbl 0326.32016
[98] Shoshichi Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. · Zbl 0246.53031
[99] Shoshichi Kobayashi, On the automorphism group of a certain class of algebraic manifolds., Tôhoku Math. J. (2) 11 (1959), 184 – 190. · Zbl 0108.16603
[100] Shoshichi Kobayashi, On hyperbolic complex spaces and extension problems, Manifolds — Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 333 – 341.
[101] Shoshichi Kobayashi, Some problems on intrinsic distances and measures, Proceedings of the C. Carathéodory International Symposium (Athens, 1973), Greek Math. Soc., Athens, 1974, pp. 306 – 317.
[102] Shoshichi Kobayashi and Takushiro Ochiai, On complex manifolds with positive tangent bundles, J. Math. Soc. Japan 22 (1970), 499 – 525. · Zbl 0197.36003
[103] Shoshichi Kobayashi and Takushiro Ochiai, Satake compactification and the great Picard theorem, J. Math. Soc. Japan 23 (1971), 340 – 350. · Zbl 0212.42702
[104] Shoshichi Kobayashi and Takushiro Ochiai, Mappings into compact manifolds with negative first Chern class, J. Math. Soc. Japan 23 (1971), 137 – 148. · Zbl 0203.39101
[105] Shoshichi Kobayashi and Takushiro Ochiai, Meromorphic mappings onto compact complex spaces of general type, Invent. Math. 31 (1975), no. 1, 7 – 16. · Zbl 0331.32020
[106] K. Kodaira, On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties), Ann. of Math. (2) 60 (1954), 28 – 48. · Zbl 0057.14102
[107] K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2) 71 (1960), 111 – 152. · Zbl 0098.13004
[108] K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds, J. Differential Geometry 6 (1971/72), 33 – 46. · Zbl 0227.32008
[109] K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751 – 798. · Zbl 0137.17501
[110] R. D. Kulle, Holomorphe Abbildungen beschränkter symmetrischer Gebiete, Nachr. Akad. Wiss Göttingen Math.-Phys. Kl. II (1973), 191 – 196 (German). · Zbl 0285.32015
[111] Rolf-Dieter Kulle, Eigentliche, holomorphe Abbildungen der Kugel in sich, Abh. Math. Sem. Univ. Hamburg 41 (1974), 5 – 16 (German). · Zbl 0297.32017
[112] Myung H. Kwack, Generalization of the big Picard theorem, Ann. of Math. (2) 90 (1969), 9 – 22. · Zbl 0179.12103
[113] Myung H. Kwack, A Schwarz lemma for canonical algebraic manifolds, Proc. Amer. Math. Soc. 41 (1973), 219 – 222. · Zbl 0282.32011
[114] Myung H. Kwack, Mappings into hyperbolic spaces, Bull. Amer. Math. Soc. 79 (1973), 695 – 697. · Zbl 0269.32012
[115] Myung H. Kwack, Some classical theorems for holomorphic mappings into hyperbolic manifolds, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 99 – 104.
[116] Serge Lang, Diophantine geometry, Interscience Tracts in Pure and Applied Mathematics, No. 11, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. · Zbl 0115.38701
[117] Serge Lang, Higher dimensional diophantine problems, Bull. Amer. Math. Soc. 80 (1974), 779 – 787. · Zbl 0298.14014
[118] Кубические формы: алгебра, геометрия, арифметика, Издат. ”Наука”, Мосцощ, 1972 (Руссиан). · Zbl 0255.14002
[119] Howard Masur, The curvature of Teichmüller space, A crash course on Kleinian groups (Lectures, Special Session, Annual Winter Meeting, Amer. Math. Soc., San Francisco, Calif., 1974) Springer, Berlin, 1974, pp. 122 – 123. Lecture Notes in Math., Vol. 400. · Zbl 0293.32019
[120] Hideyuki Matsumura, On algebraic groups of birational transformations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 34 (1963), 151 – 155. · Zbl 0134.16601
[121] Hideyuki Matsumura and Paul Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1963/1964), 347 – 361. · Zbl 0141.37401
[122] Yozo Matsushima, Holomorphic immersions of a compact Kähler manifold into complex tori, J. Differential Geometry 9 (1974), 309 – 328. · Zbl 0284.57017
[123] Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966.
[124] Rolf Nevanlinna, Analytic functions, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. · Zbl 0199.12501
[125] Takushiro Ochiai, Some remark on the defect relation of holomorphic curves, Osaka J. Math. 11 (1974), 483 – 501. · Zbl 0292.32017
[126] Takushiro Ochiai, On holomorphic curves in algebraic varieties with ample irregularity, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 2, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 255 – 258. · Zbl 0374.32006
[127] Donald Alfred Pelles, Holomorphic maps which preserve intrinsic measure, Amer. J. Math. 97 (1975), 1 – 15. · Zbl 0303.32021
[128] Klaus Peters, Über holomorphe und meromorphe Abbildungen gewisser kompakter komplexer Mannigfaltigkeiten, Arch. Math. (Basel) 15 (1964), 222 – 231 (German). · Zbl 0136.07201
[129] Konrad Peters, Starrheitssätze für Produkte normierter Vektorräume endlicher Dimension und für Produkte hyperbolischer komplexer Räume, Math. Ann. 208 (1974), 343 – 354 (German). · Zbl 0281.32018
[130] Émile Picard, Mémoire sur les fonctions entières, Ann. Sci. École Norm. Sup. (2) 9 (1880), 145 – 166 (French). · JFM 12.0327.01
[131] Геометрия классических областей и теория автоморфных фуикций, Современные Проблемы Математики, Государств. Издат. Физ.-Мат. Лит., Мосцощ, 1961 (Руссиан).
[132] I. I. Pjateckiĭ-Šapiro, Arithmetic groups in complex domains, Uspehi Mat. Nauk 19 (1964), no. 6 (120), 93 – 121 (Russian).
[133] Hans-Jörg Reiffen, Die differentialgeometrischen Eigenschaften der invarianten Distanzfunktion von Carathéodory, Schr. Math. Inst. Univ. Münster No. 26 (1963), iii+66 (German). · Zbl 0115.16303
[134] Hans-Jörg Reiffen, Die Carathéodorysche Distanz und ihre zugehörige Differentialmetrik, Math. Ann. 161 (1965), 315 – 324 (German). · Zbl 0141.08803
[135] Reinhold Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328 – 370 (German). · Zbl 0079.10201
[136] Willi Rinow, Die innere Geometrie der metrischen Räume, Die Grundlehren der mathematischen Wissenschaften, Bd. 105, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. · Zbl 0096.16302
[137] Raphael M. Robinson, A generalization of Picard’s and related theorems, Duke Math. J. 5 (1939), no. 1, 118 – 132. · Zbl 0020.37801
[138] H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Springer, Berlin, 1971, pp. 125 – 137. Lecture Notes in Math., Vol. 185.
[139] H. L. Royden, The extension of regular holomorphic maps, Proc. Amer. Math. Soc. 43 (1974), 306 – 310. · Zbl 0292.32019
[140] H. L. Royden, Holomorphic fiber bundles with hyperbolic fiber, Proc. Amer. Math. Soc. 43 (1974), 311 – 312. · Zbl 0284.32017
[141] H. L. Royden, Automorphisms and isometries of Teichmüller space, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J., 1971, pp. 369 – 383. · Zbl 0218.32011
[142] H. L. Royden, Metrics on Teichmüller space, A crash course on Kleinian groups (Lectures, Special Session, Annual Winter Meeting, Amer. Math. Soc., San Francisco, Calif., 1974) Springer, Berlin, 1974, pp. 71 – 78. Lecture Notes in Math., Vol. 400. · Zbl 0298.32014
[143] I. R. Šafarevič, B. G. Averbuh, Ju. R. Vaĭnberg, A. B. Žižčenko, Ju. I. Manin, B. G. Moĭšezon, G. N. Tjurina, and A. N. Tjurin, Algebraic surfaces, Trudy Mat. Inst. Steklov. 75 (1965), 1 – 215 (Russian).
[144] Fumio Sakai, Degeneracy of holomorphic maps with ramification, Invent. Math. 26 (1974), 213 – 229. · Zbl 0276.32012
[145] Fumio Sakai, Defect relations and ramification, Proc. Japan Acad. 50 (1974), 723 – 728. · Zbl 0335.32012
[146] Fumio Sakai, Defect relations for equidimensional holomorphic maps, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 3, 561 – 580. · Zbl 0344.32014
[147] P. Samuel, Lectures on old and new results on algebraic curves, Notes by S. Anantharaman. Tata Institute of Fundamental Research Lectures on Mathematics, No. 36, Tata Institute of Fundamental Research, Bombay, 1966. · Zbl 0165.24102
[148] Ichir Satake, On compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math. (2) 72 (1960), 555 – 580. · Zbl 0146.04701
[149] Bernard Shiffman, Extension of positive line bundles and meromorphic maps, Invent. Math. 15 (1972), no. 4, 332 – 347. · Zbl 0223.32017
[150] Bernard Shiffman, Extension of holomorphic maps into hermitian manifolds, Math. Ann. 194 (1971), 249 – 258. · Zbl 0213.36001
[151] Bernard Shiffman, Applications of geometric measure theory to value distribution theory for meromorphic maps, Value distribution theory (Proc. Tulane Univ. Program, Tulane Univ., New Orleans, La., 1972 – 1973) Dekker, New York, 1974, pp. 63 – 95.
[152] Tetsuji Shioda, Algebraic cycles on certain \?3 surfaces in characteristic\?, Manifolds – Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 357 – 364.
[153] Nessim Sibony, Prolongement des fonctions holomorphes bornées et métrique de Carathéodory, Invent. Math. 29 (1975), no. 3, 205 – 230 (French). · Zbl 0333.32011
[154] Nessim Sibony, Prolongement analytique des fonctions holomorphes bornées, Séminaire Pierre Lelong (Analyse) (année 1972 – 1973), Springer, Berlin, 1974, pp. 44 – 66. Lecture Notes in Math., Vol. 410 (French). · Zbl 0246.32015
[155] Yum Tong Siu, Techniques of extension of analytic objects, Marcel Dekker, Inc., New York, 1974. Lecture Notes in Pure and Applied Mathematics, Vol. 8. · Zbl 0294.32007
[156] Karl Stein, Fortsetzung holomorpher Korrespondenzen, Invent. Math. 6 (1968), 78 – 90 (German). · Zbl 0159.37701
[157] Wilhelm Stoll, Über meromorphe Abbildungen komplexer Räume. I, Math. Ann. 136 (1958), 201 – 239 (German). · Zbl 0096.06202
[158] Wilhelm Stoll, Value distribution of holomorphic maps into compact complex manifolds., Lecture Notes in Mathematics, Vol. 135, Springer-Verlag, Berlin-New York, 1970. · Zbl 0195.36702
[159] Yoshihiko Suyama, On the first main theorem of holomorphic mappings from \?² into \?_{\?-1}(\?), Osaka J. Math. 11 (1974), 425 – 449. · Zbl 0292.32016
[160] Kenji Ueno, Classification of algebraic varieties. I, Compositio Math. 27 (1973), 277 – 342. · Zbl 0284.14015
[161] Hermann Weyl, Meromorphic Functions and Analytic Curves, Annals of Mathematics Studies, no. 12, Princeton University Press, Princeton, N. J., 1943. · Zbl 0061.15302
[162] H. Wu, A remark on holomorphic sectional curvature, Indiana Univ. Math. J. 22 (1972/73), 1103 – 1108. · Zbl 0265.53055
[163] H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193 – 233. · Zbl 0158.33301
[164] Hung-hsi Wu, The equidistribution theory of holomorphic curves, Annals of Mathematics Studies, No. 64, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970.
[165] H. Wu, Mappings of Riemann surfaces (Nevanlinna theory), Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 480 – 532.
[166] H. Wu, Remarks on the first main theorem in equidistribution theory. I, J. Differential Geometry 2 (1968), 197 – 202. H. Wu, Remarks on the first main theorem in equidistribution theory. II, J. Differential Geometry 2 (1968), 369 – 384. H. Wu, Remarks on the first main theorem in equidistribution theory. III, J. Differential Geometry 3 (1969), 83 – 94. H. Wu, Remarks on the first main theorem in equidistribution theory. IV, J. Differential Geometry 3 (1969), 433 – 446. · Zbl 0164.38103
[167] R. E. Greene and H. Wu, Curvature and complex analysis, Bull. Amer. Math. Soc. 77 (1971), 1045 – 1049. · Zbl 0225.32010
[168] Shing Tung Yau, On the curvature of compact Hermitian manifolds, Invent. Math. 25 (1974), 213 – 239. · Zbl 0299.53039
[169] Shing Tung Yau, Intrinsic measures of compact complex manifolds, Math. Ann. 212 (1975), 317 – 329. · Zbl 0313.32031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.