×

zbMATH — the first resource for mathematics

Hypoelliptic differential operators and nilpotent groups. (English) Zbl 0346.35030

MSC:
35H10 Hypoelliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abrahams, R. &Robbin, J.,Transversal Mappings and Flows, W. A. Benjamin, Inc. New York, 1967.
[2] Baouendi, M. S. &Goulaouic, G., Non-analytic hypeollipticity for some degenerate elliptic operators.Bull. Amer. Math. Soc., 78 (1972), 483–486. · Zbl 0276.35023 · doi:10.1090/S0002-9904-1972-12955-0
[3] Boutet de Monvel, L. &Trèves, F., On a class of pseudodifferential operators with double characteristics.Invent. Math., 24 (1974), 1–34. · Zbl 0281.35083 · doi:10.1007/BF01418785
[4] Calderón, A. P., Lebesgue spaces of differentiable functions and distributions.,Proc. Symp. Pure Math., Vol. 4, Amer. Math. Soc. 1961, 33–49. · Zbl 0195.41103
[5] –, Intermediate spaces and interpolations, the complex method,Studia Math., 24 (1964), 113–190. · Zbl 0204.13703
[6] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups,Arkiv f. Mat., 13, 1975, 161–207. · Zbl 0312.35026 · doi:10.1007/BF02386204
[7] Folland, G. B. &Kohn, J. J.,The Neumann Problem for the Cauchy-Riemann complex. Ann. of Math. Studies, 75 Princeton Univ. Press, Princeton, N.J. 1972. · Zbl 0247.35093
[8] Folland, G. B. &Stein, E. M., Estimates for the \(\bar \partial _b - complex\) and analysis on the Heisenberg group.Comm. Pure Appl. Math., 27 (1974), 429–522. · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[9] Greiner, P. & Stein, E. M., A parametrix for the \(\bar \partial\) problem. Rencontre sur l’Analyse complexe à plusieurs variables..., Montreal, 1975, 49–63.
[10] Hörmander, L., Hypoelliptic second order differential equations.Acta Math., 119 (1967), 147–171. · Zbl 0156.10701 · doi:10.1007/BF02392081
[11] Jacobson, N.,Lie algebras. Interscience Tracts in Pure and Applied Mathematics, Vol. 10, John Wiley and Sons, New York 1962. · Zbl 0121.27504
[12] Knapp, A. &Stein, E. M., Intertwining operators for semisimple groups.Ann. of Math., 93 (1971), 489–578. · Zbl 0257.22015 · doi:10.2307/1970887
[13] Kohn, J. J., Boundaries of complex manifolds.Proc. Conference on Complex Manifolds, Minneapolis, 1964, 81–94.
[14] –, Complex hypoelliptic operators.Symposia Mathematica, 7 (1971), 459–468.
[15] –, Pseudo-differential operators and hypoellipticity.Proc. Symp. Pure Math, 23, Amer. Math. Soc., 1973, 61–69.
[16] Kobányi, A. &Vagi, S., Singular integrals in homogeneous spaces and some problems of classical analysis.Ann. Scuola Norm. Sup. Pisa, 25 (1971), 575–648.
[17] Lions, J. L. &Peetre, J., Sur une classe d’espaces d’interpolation.Publ. Math Inst. Hautes Etudes Sci. Paris, 19 (1964), 5–68. · Zbl 0148.11403 · doi:10.1007/BF02684796
[18] O’Neil, R., Two elementary theorems of the interpolation of linear operators,Proc. Amer. Math Soc., 17 (1966), 76–82. · Zbl 0145.16302 · doi:10.2307/2035064
[19] Pukanszky, L.,Lecons sur les Representations des Groupes. Monographies de La Societé Mathématique de France, Dunod, Paris, 1967. · Zbl 0152.01201
[20] Radkevich, E. V., Hypoelliptic operators with multiple characteristics.Mat. Sbornik, 79 (121) (1969), 193–216. (Math. USSR Sbornik, 8 (1969), 181–205. · Zbl 0206.10403
[21] Serre, J.-P.,Lie algebras and Lie groups, Benjamin, New York, 1965. · Zbl 0132.27803
[22] Stein, E. M.,Singular intergrals and differentiability properties of functions. Princeton Univ. Press, Princton, 1970. · Zbl 0207.13501
[23] Taibleson, M. H., Translation invariant operators, duality, and interpolation, II.J. Math. Mech., 14 (1965), 821–840. · Zbl 0132.09402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.