×

zbMATH — the first resource for mathematics

Wave operators for momentum dependent long range potential. (English) Zbl 0346.47010

MSC:
47A40 Scattering theory of linear operators
47Gxx Integral, integro-differential, and pseudodifferential operators
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
PDF BibTeX Cite
Full Text: Numdam EuDML
References:
[1] P.K. Alsholm , Wave operators for long range scattering , Preprint. · Zbl 0359.47006
[2] W.O. Amrein , Scattering theory in Mathematical Physics , edited by J. La Vita and J. P. Marchand ( Reidel , Dordrecht , 1973 ). · Zbl 0289.47005
[3] W.O. Amrein , Ph . Martin and B. Misra , On the asymptotic condition of scattering Theory , Helv. Phys. Acta , t. 43 , 1970 , p. 313 - 344 . MR 309477 | Zbl 0195.56101 · Zbl 0195.56101
[4] A.M. Berthier and P. Collet , Existence and Completeness of the wave operators in Scattering Theory with momentum dependent potentials , 1975 , to appear in Journal of Functional Analysis . MR 454404 | Zbl 0358.35064 · Zbl 0358.35064
[5] V.S. Buslaev and V.B. Matveev , Wave operators for the Schrödinger equation with a slowly decreasing potential . Theor. Math. Phys. , t. 2 , 1970 , p. 266 - 274 . MR 473580
[6] J.D. Dollard , Asymptotic convergence and the Coulomb interaction , Journal of Math. Phys. , t. 5 , 1964 , p. 729 - 738 . MR 163620
[7] M.V. Fedoriouk , Méthode de la phase stationnaire pour les intégrales multiples , J. Math. App. et Phys. Math. , t. 2 , n^\circ 1 , 1962 , p. 145 - 150 .
[8] L. Hörmander , Fourier integrals operators , Acta Math. , t. 127 , 1971 , p. 79 . MR 388463 | Zbl 0212.46601 · Zbl 0212.46601
[9] L. Hörmander , The existence of the wave operators in scattering theory , Preprint ( 1975 ), University of Lund . MR 393884
[10] J.W. Milnor , Morse theory , Princeton University Press , Princeton, New Jersey . Zbl 0108.10401 · Zbl 0108.10401
[11] L. Schwartz , Cours d’Analyse de l’École Polytechnique , Tome 1 . Zbl 0171.01301 · Zbl 0171.01301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.