×

zbMATH — the first resource for mathematics

Principal quadratic functionals. (English) Zbl 0346.49013

MSC:
49K15 Optimality conditions for problems involving ordinary differential equations
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Philip Hartman, Self-adjoint, non-oscillatory systems of ordinary, second order, linear differential equations, Duke Math. J. 24 (1957), 25 – 35. · Zbl 0077.08701
[2] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0148.12601
[3] Walter Leighton, Principal quadratic functionals, Trans. Amer. Math. Soc. 67 (1949), 253 – 274. · Zbl 0041.22404
[4] Walter Leighton and Allan D. Martin, Quadratic functionals with a singular end point, Trans. Amer. Math. Soc. 78 (1955), 98 – 128. · Zbl 0064.35401
[5] Marston Morse and Walter Leighton, Singular quadratic functionals, Trans. Amer. Math. Soc. 40 (1936), no. 2, 252 – 286. · Zbl 0015.02701
[6] Marston Morse, The calculus of variations in the large, American Mathematical Society Colloquium Publications, vol. 18, American Mathematical Society, Providence, RI, 1996. Reprint of the 1932 original. · Zbl 0011.02802
[7] Marston Morse, A generalization of the sturm separation and comparison theorems in \?-space, Math. Ann. 103 (1930), no. 1, 52 – 69. · JFM 56.1078.03
[8] Marston Morse, Singular quadratic functionals, Math. Ann. 201 (1973), 315 – 340. · Zbl 0237.49013
[9] E. C. Tomastik, Singular quadratic functionals of \? dependent variables, Trans. Amer. Math. Soc. 124 (1966), 60 – 76. · Zbl 0161.09503
[10] William T. Reid, Some elementary properties of proper values and proper vectors of matrix functions, SIAM J. Appl. Math. 18 (1970), 259 – 266. · Zbl 0192.37201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.