×

zbMATH — the first resource for mathematics

Estimations d’erreur pour des éléments finis droits presque dégénérées. (French) Zbl 0346.65052

MSC:
65N15 Error bounds for boundary value problems involving PDEs
65D05 Numerical interpolation
41A05 Interpolation in approximation theory
41A63 Multidimensional problems
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] ADINI A and CLOUGH R W, Analysis of plate bending by the finite element method N S F report G 7337, 1961
[2] AGMON S, Lectures on elliptic boundary value problems, Van Nostrand, 1965 Zbl0142.37401 MR178246 · Zbl 0142.37401
[3] BRAMBLE J H and HILBERT S R, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, S I A M J Numer Anal, 7, 112-124, 1970 Zbl0201.07803 MR263214 · Zbl 0201.07803
[4] BRAMBLE J H and ZLAMAL M, Triangular elements in the finite element method, Math Comp , 24,809-820, 1970 Zbl0226.65073 MR282540 · Zbl 0226.65073
[5] CIARLET P G and RAVIART P-A, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch Rat Mech Anal, 46, 177-199, 1972 Zbl0243.41004 MR336957 · Zbl 0243.41004
[6] CIARLET P G and RAVIART P -A, Interpolation theory over curved elements, with applications to finite element methods, Comp Meth Appl Mech Eng, 1, 217-249, 1972 Zbl0261.65079 MR375801 · Zbl 0261.65079
[7] COURANT R and HILBERT D, Methods of mathematical physics Vol 2, Interscience Publishers, 1962 Zbl0099.29504 · Zbl 0099.29504
[8] LIONS J L, Problèmes aux limites dans les équations aux dérivées partielles, Presses de l’Université de Montréal, 1962 Zbl0143.14003 MR251372 · Zbl 0143.14003
[9] NICOLAIDES R AOn a class of finite éléments generaled by Lagrange interpolation, S I A M J , Numer Anal 10, 182-189 1973 Zbl0244.65007 MR317512 · Zbl 0244.65007
[10] [10] STRANG G, Approximation in the finite element method, Numer Math , 19, 81-98, 1972 Zbl0221.65174 MR305547 · Zbl 0221.65174
[11] STRANG G and Fix G J, An analysis of the finite element method, Prentice Hall, 1973 Zbl0356.65096 MR443377 · Zbl 0356.65096
[12] SYNGE, J L, The hypercircle in mathematical physics, Cambridge University Press, 1957 Zbl0079.13802 MR97605 · Zbl 0079.13802
[13] ZIENKIENVICZ O C, The finite element method in engineering science, McGraw-Hill, 1971 Zbl0237.73071 · Zbl 0237.73071
[14] [14] ZLAMAL M, On the finite element method, Numer Math , 12,394-409, 1968 Zbl0176.16001 MR243753 · Zbl 0176.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.