×

zbMATH — the first resource for mathematics

Solution of small class number problems for cyclotomic fields. (English) Zbl 0348.12011

MSC:
11R18 Cyclotomic extensions
11R29 Class numbers, class groups, discriminants
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] H. Bauer : Numerische Bestimmung von Klassenzahlen reeller zyklischer Zahlkorper . J. of Number Theory 1 (1969) 161-162. · Zbl 0167.32301
[2] H. Hasse : Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkorpern . Abh. Deutsche Akad. Wiss. 1948, Nr. 2 (1950). · Zbl 0035.30502
[3] H. Hasse : Uber die Klassenzahl abelscher Zahlkorper . Akademie Verlag, 1952. · Zbl 0046.26003
[4] K. Iwasawa : A note on class numbers of algebraic number fields . Abh. Math. Sem. Univ. Hamburg 20 (1956) 257-258. · Zbl 0074.03002
[5] J. Masley : On the class number of cyclotomic fields . Dissertation, Princeton Univ., 1972.
[6] J. Masley : Solution of the class number two problem for cyclotomic fields . Inventiones Math. 25 (1975). · Zbl 0296.12003
[7] J. Masley and H.L. Montgomery : Unique factorization in cyclotomic fields . To appear in Crelle’s Journal . · Zbl 0335.12013
[8] T. Metsankyla : On the growth of the first factor of the cyclotomic class number . Ann. Univ. Turku, Ser. AI 155 (1972). · Zbl 0239.12008
[9] M. Newman : A table of the first factor for prime cyclotomic fields . Math. Comp. 24 (1970) 215-219. · Zbl 0198.36902
[10] G. Schrutka V. Rechtenstamm : Tabelle der (relativ-)Klassenzahlen von Kreiskorper. Abh. Deutsche Akad. Wiss . Berlin, 1964 Math Nat. Kl. Nr. 2. · Zbl 0199.09803
[11] A. Yokoyama : On class numbers of finite algebraic number fields . Tohoku Math J., 17 (1965) 349-357. · Zbl 0139.28202
[12] H. Hasse : Zahlentheorie . Akademie Verlag, Berlin, 3rd edition, 1969, p. 591. · Zbl 0035.02002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.