×

zbMATH — the first resource for mathematics

A canonical structure for classical field theories. (English) Zbl 0348.49017

MSC:
49L99 Hamilton-Jacobi theories
49Q99 Manifolds and measure-geometric topics
49S05 Variational principles of physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bałaban, T., Rączka, R.: Second quantization of non-linear relativistic wave equations, Part I: Canonical formalism (preprint)
[2] Białynicki-Birula, I.: Nuovo Cimento35, 697 (1965)
[3] Białynicki-Birula, I., Iwiński, Z.: Reports Math. Phys.4, 139 (1973) · Zbl 0259.76055
[4] Bourbaki, N.: Topologie générale. Paris: 1960 · Zbl 0102.27104
[5] Dedecker, P.: Calcul des variations, formes différentielles et champs géodésiques. Colloque International de Géometrie Différentielle. Strassbourg: 1953
[6] Gawędzki, K.: Reports Math. Phys.3, 307 (1972)
[7] Gawędzki, K.: Fourier-like kernels in geometric quantization, Dissertationes Math., to appear
[8] Jörgens, K.: Math. Z.77, 295 (1961) · Zbl 0111.09105
[9] Kijowski, J.: Commun. Math. Phys.30, 99 (1973)
[10] Kijowski, J., Szczyrba, W.: On inductive differential manifolds (in preparation) · Zbl 0338.53021
[11] Kostant, B.: Quantization and unitary representations. Lecture Notes in Math.170, p. 87. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0223.53028
[12] Moravetz, C. S., Strauss, W. A.: Comm. Pure Appl. Math.25, 1 (1972) · Zbl 0228.35055
[13] Renouard, P.: Variétés sympléctiques et quantification. Orsay: Thése (1969)
[14] Segal, I. E.: Mathematical problems of relativistic physics. Proceedings of the Summer Seminar. Boulder, Colorado 1960 · Zbl 0099.22402
[15] Sternberg, S.: Lectures on differential geometry, New York: 1964 · Zbl 0129.13102
[16] Szczyrba, W.: Lagrangian formalism in the classical field theory. Annal. Polon. Math.32 (1975) (to appear) · Zbl 0317.46060
[17] Sternberg, S., Goldschmidt, H.: Annal. Instit. Fourier23, 203–267 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.