×

zbMATH — the first resource for mathematics

The spectrum of dynamical systems arising from substitutions of constant length. (English) Zbl 0348.54034

MSC:
54H20 Topological dynamics (MSC2010)
28D05 Measure-preserving transformations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Coven, E., Hedlund, G.A.: Sequences with minimal block growth. Math. Systems Theory 7, 138-153 (1973) · Zbl 0256.54028 · doi:10.1007/BF01762232
[2] Coven, E., Keane, M.: The structure of substitution minimal sets. Trans. Amer. math. Soc. 162, 89-102 (1971) · Zbl 0222.54053 · doi:10.1090/S0002-9947-1971-0284995-1
[3] Dekking, M., Michel, P., Keane, M.: Substitutions. Seminar, Rennes. [Unpublished manuscript, 1977]
[4] Ellis, Robert, Gottschalk, W.H.: Homomorphisms of transformation groups. Trans. Amer. math. Soc. 94, 258-271 (1960) · Zbl 0094.17401 · doi:10.1090/S0002-9947-1960-0123635-1
[5] Gottschalk, W.H.: Substitution minimal sets. Trans. Amer. math. Soc. 109, 467-491 (1963) · Zbl 0121.18002 · doi:10.1090/S0002-9947-1963-0190915-6
[6] Kakutani, S.: Induced measure preserving transformations. Proc. Imp. Acad. Tokyo 19, 635-641 (1943) · Zbl 0060.27406 · doi:10.3792/pia/1195573248
[7] Kamae, Teturo: A topological invariant of substitution minimal sets. J. math. Soc. Japan 24, 285-306 (1972) · Zbl 0232.54052 · doi:10.2969/jmsj/02420285
[8] Klein, Benjamin G.: Homomorphisms of symbolical dynamical systems. Math. Systems Theory 6, 107-122 (1972) · Zbl 0235.54042 · doi:10.1007/BF01706082
[9] Martin, John C.: Substitution minimal flows. Amer. J. Math. 93, 503-526 (1971) · Zbl 0221.54039 · doi:10.2307/2373391
[10] Martin, John C.: Minimal flows arising from substitutions of non-constant length. Math. Systems Theory 7, 73-82 (1973) · Zbl 0256.54026 · doi:10.1007/BF01824809
[11] Michel, P.: Stricte ergodicité d’ensembles minimaux de substitutions. C.R. Acad. Sci. Paris Sér A-B 278, 811-813 (1974) · Zbl 0274.60028
[12] Michel, P.: Coincidence values and spectra of substitutions. Preprint 1977
[13] Petersen, K., Shapiro, L.: Induced flows. Trans. Amer. math. Soc. 177, 375-389 (1973) · Zbl 0229.54036 · doi:10.1090/S0002-9947-1973-0322839-1
[14] van der Waerden, B.L.: Modern algebra. Vol. 1, 2nd ed. New York: Frederick Ungar 1949 · Zbl 0033.10102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.