×

Power free values of polynomials. (English) Zbl 0349.10039


MSC:

11M99 Zeta and \(L\)-functions: analytic theory
11C08 Polynomials in number theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nagell, Abhandl. Math. Sem. Hamburg 1 pp 179– (1922)
[2] DOI: 10.1007/BF03017586 · Zbl 0008.24102 · doi:10.1007/BF03017586
[3] DOI: 10.1112/jlms/s1-26.4.268 · Zbl 0043.04901 · doi:10.1112/jlms/s1-26.4.268
[4] DOI: 10.1112/jlms/s1-26.4.263 · Zbl 0043.04802 · doi:10.1112/jlms/s1-26.4.263
[5] Hooley, Applications of sieve methods to the theory of numbers (1976) · Zbl 0327.10044
[6] Richert, Mathematika 16 pp 1– (1969)
[7] Huxley, Mathematika 22 pp 188– (1975)
[8] Huxley, The Distribution of Prime Numbers, Oxford Mathematical Monographs 19 · Zbl 0248.10030
[9] Le Veque, Topics in Number Theory (1961)
[10] Sukthankar, Indagationes Mathematicae 35
[11] Baker, Transcendental Number Theory (1975) · doi:10.1017/CBO9780511565977
[12] DOI: 10.1007/BF02392633 · Zbl 0039.27501 · doi:10.1007/BF02392633
[13] DOI: 10.1112/jlms/s2-5.2.313 · Zbl 0238.10018 · doi:10.1112/jlms/s2-5.2.313
[14] Cugiani, Riv. Mat. Univ. Parma 4 pp 95– (1953)
[15] DOI: 10.1112/jlms/s1-28.4.416 · Zbl 0051.27703 · doi:10.1112/jlms/s1-28.4.416
[16] Hooley, Mathematika 14 pp 21– (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.