×

Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe. (German) Zbl 0349.14018


MSC:

14H30 Coverings of curves, fundamental group
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14F35 Homotopy theory and fundamental groups in algebraic geometry

References:

[1] Gieseker, D.: P-ample bundles and their Chern classes. Nagoya math. J.43, 91-116 (1971) · Zbl 0221.14010
[2] Gieseker, D.: Stable vector bundles and the Frobenius morphism. Ann. sci. ?cole norm. sup. IV. ser6, 95-101 (1973) · Zbl 0281.14013
[3] Grothendieck, A.: Technique de descente et th?or?mes d’existence en g?om?trie alg?brique I. In: S?minaire Bourbaki 12e ann?e 1959/60 fasc. 1 Expos? Nr. 190. 29 pp. Paris: Secr?tariat math?matique 1960
[4] Hartshorne, R.: Ample vector bundles on curves. Nagoya Math. J.43, 73-89 (1971) · Zbl 0218.14018
[5] Lange, H.: ?ber die Modulschemata der Kurven vom Geschlecht 2 mit 1, 2 oder 3 Weierstra?punkten. J. reine angew. Math.277, 27-36 (1975) · Zbl 0317.14011 · doi:10.1515/crll.1975.277.27
[6] Mumford, D.: Projective invariants of projective structures and applications. In: Proceedings of the International Congress of Mathematicians (Stockholm 1962), pp. 526-530. Djursholm: Institut Mittag-Leffler 1963
[7] Narasimhan, M. S., Ramanan, S.: Vector bundles on curves. In: Algebraic geometry (Bombay 1968) pp. 335-346. Bombay-London: Oxford University Press 1969
[8] Seshadri, C.S.: Mumford’s conjecture forGL(2) and applications. In: Algebraic geometry (Bombay 1968) pp. 347-371. Bombay-London: Oxford University Press 1969
[9] Stuhler, U.: Vektorb?ndel auf Kurven mit Singularit?ten Math. Ann.220, 137-142 (1976) · Zbl 0322.14010 · doi:10.1007/BF01351697
[10] Tango, H.: On the behavior of extensions of vector bundles under the Frobenius map. Nagoya Math. J48, 73-89 (1972) · Zbl 0239.14007
[11] Weil, A.: G?n?ralisation des fonctions ab?li?nnes. J. Math. pur. appl., IX. S?r.17, 47-87 (1938) · JFM 64.0361.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.