×

One-to-one partial right translations of a right cancellative semigroup. (English) Zbl 0349.20025


MSC:

20M10 General structure theory for semigroups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Clifford, A. H., A class of \(d\)-simple semigroups, Amer. J. Math., 75, 547-566 (1953) · Zbl 0051.01302
[2] Clifford, A. H.; Preston, G. B., Algebraic Theory of Semigroups, (Mathematical Surveys, No. 7, Vol. II (1967), American Mathematical Society: American Mathematical Society Providence, R.I.) · Zbl 0111.03403
[3] D. B. McAlisterTrans. Amer. Math. Soc.; D. B. McAlisterTrans. Amer. Math. Soc.
[4] D. B. McAlisterSemigroup Forum; D. B. McAlisterSemigroup Forum · Zbl 0297.20070
[5] McFadden, R.; O’Carroll, L., \(F\)-inverse semigroups, (Proc. London Math. Soc. Ser. 3, 22 (1971)), 652-666 · Zbl 0219.20042
[6] Petrich, M., (Introduction to Semigroups, Vol. I (1973), C. E. Merrill: C. E. Merrill Columbus, Ohio) · Zbl 0321.20037
[7] Prston, G. B., Representations of inverse semigroups, J. London Math. Soc., 29, 411-419 (1954) · Zbl 0056.02001
[8] Schein, B. M., Completions, translational hulls and ideal extensions of inverse semigroups, Czechoslovak Math. J., 23, 575-610 (1973) · Zbl 0273.20047
[9] Vagner, V. V., Generalised groups, Dokl. Akad. Nauk. SSSR (N.S.), 84, 1119-1122 (1952) · Zbl 0047.25504
[10] Vagner, V. V., Theory of generalised heaps and generalised groups, Math.USSR Sb., 32, 74, 545-632 (1953) · Zbl 0053.20603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.