×

The residue calculus in several complex variables. (English) Zbl 0349.32002


MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32Q99 Complex manifolds
32C30 Integration on analytic sets and spaces, currents
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aldo Andreotti and Theodore Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713 – 717. · Zbl 0115.38405 · doi:10.2307/1970034
[2] C. H. Clemens Jr., Picard-Lefschetz theorem for families of nonsingular algebraic varieties acquiring ordinary singularities, Trans. Amer. Math. Soc. 136 (1969), 93 – 108. · Zbl 0185.51302
[3] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-Lon don, 1962. · Zbl 0099.29504
[4] Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5 – 57 (French). Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5 – 77 (French).
[5] Gerald Leonard Gordon, Differential of the second kind, Fonctions analytiques de plusieurs variables et analyse complexe (Colloq. Internat. CNRS, No. 208, Paris, 1972) Gauthier-Villars, Paris, 1974, pp. 53 – 64. ”Agora Mathematica”, No. 1.
[6] Gerald Leonard Gordon, A Poincaré duality type theorem for polyhedra, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 4, 47 – 58 (English, with French summary). · Zbl 0234.55012
[7] Phillip A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228 – 296. · Zbl 0214.19802
[8] Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496 – 541. · Zbl 0215.08103
[9] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109 – 203; ibid. (2) 79 (1964), 205 – 326. · Zbl 0122.38603
[10] -, Sub-analytic sub-sets (to appear). · Zbl 0508.32001
[11] W. V. D. Hodge and M. F. Atiyah, Integrals of the second kind on an algebraic variety, Ann. of Math. (2) 62 (1955), 56 – 91. · Zbl 0068.34401 · doi:10.2307/2007100
[12] M. Herrera and D. Lieberman, Residues and principal values on complex spaces, Math. Ann. 194 (1971), 259 – 294. · Zbl 0224.32012 · doi:10.1007/BF01350129
[13] M. Lejeune and B. Teissier, Quelques calculs utiles pour la résolution des singularitiés, Seminar at École Polytechnique, 1972.
[14] Jean Leray, Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III), Bull. Soc. Math. France 87 (1959), 81 – 180 (French). · Zbl 0199.41203
[15] J. Milnor, Differential structures, Mimeographed notes, Princeton, 1961.
[16] -, Differentiable manifolds which are homotopy spheres, Mimeographed notes, Princeton, 1959. · Zbl 0106.37001
[17] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. · Zbl 0184.48405
[18] B. G. Moĭšezon, Algebraic homology classes on algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 225 – 268 (Russian).
[19] David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5 – 22. · Zbl 0108.16801
[20] Peter Orlik and Philip Wagreich, Isolated singularities of algebraic surfaces with C* action, Ann. of Math. (2) 93 (1971), 205 – 228. · Zbl 0212.53702 · doi:10.2307/1970772
[21] Frédéric Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France 93 (1965), 333 – 367 (French). · Zbl 0192.29701
[22] Jean-Baptiste Poly, Sur un théorème de J. Leray en théorie des résidus, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A171 – A174 (French). · Zbl 0226.32005
[23] Guy Robin, Formes semi-méromorphes et cohomologie du complémentaire d’une hypersurface d’une variété analytique complexe, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A33 – A35 (French). · Zbl 0207.38001
[24] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240 – 284 (French). · Zbl 0197.20502
[25] Philip Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419 – 454. · Zbl 0204.54501 · doi:10.2307/2373333
[26] André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). · Zbl 0137.41103
[27] Hassler Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J., 1965, pp. 205 – 244. · Zbl 0006.37101
[28] Oscar Zariski, Algebraic surfaces, Second supplemented edition, Springer-Verlag, New York-Heidelberg, 1971. With appendices by S. S. Abhyankar, J. Lipman, and D. Mumford; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 61. · Zbl 0085.36202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.