The lattice of minimal realizations of response maps over rings. (English) Zbl 0349.93012


93B10 Canonical structure
93B15 Realizations from input-output data
93B25 Algebraic methods
13C99 Theory of modules and ideals in commutative rings
Full Text: DOI


[1] N. Bourbaki,Algèbre Commutative, Hermann, Paris, 1965. · Zbl 0141.03501
[2] W. S. Ching and B. F. Wyman, Reachability, observability, and duality of linear systems over commutative rings, to appear inJ. Comp. Systems Sc. (1978).
[3] S. Eilenberg,Automata, Languages, and Machines, Vol. A, Academic Press, New York, 1974. · Zbl 0317.94045
[4] M. Fliess, Matrices de Hankel,J. Math. Pures Appl. 53 (1974), 197–224. · Zbl 0315.94051
[5] R. E. Kalman, P. L. Falb andM. A. Arbib,Topics in Mathematical System Theory, McGraw-Hill, New York, 1969. · Zbl 0231.49001
[6] E. W. Kamen, On the algebraic theory of systems defined by convolution operators,Math. System Theory 9 (1975), 57–74. · Zbl 0318.93003
[7] E. W. Kamen, An operator theory of linear functional differential equations, to appear inJ. Diff. Equations (1977).
[8] A. G. Kurosh,General Algebra, Chelsea, New York, 1963. · Zbl 0121.25901
[9] Y. Rouchaleau andB. F. Wyman, Linear dynamical systems over integral domains,J. Comp. System Sciences 9 (1975), 129–142. · Zbl 0304.34041
[10] Y. Rouchaleau, B. F. Wyman andR. E. Kalman, Algebraic structure of linear dynamical systems. III. Realization theory over a commutative ring,Proc. Nat. Acad. Sci. (USA)69 (1972), 3404–3406. · Zbl 0264.34058
[11] E. D. Sontag, Linear systems over commutative rings: a survey,Ricerche di Automatica 7 (1976), 1–34.
[12] E. D. Sontag, On split realizations of response maps over rings, to appear inInformation and Control (1978). · Zbl 0382.93009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.