zbMATH — the first resource for mathematics

Fourier coefficients of cusp forms. (English) Zbl 0351.10019

11F12 Automorphic forms, one variable
Full Text: DOI EuDML
[1] Duflo, M., Labesse, J.-P.: Sur la formule des traces de Selberg; Ann. scient. Ec. Norm. Sup. 4e série, t.4, 193-284 (1971) · Zbl 0277.12011
[2] Faddeev, L.: Expansion in eigenfunctions of the Laplace operator on the fundamental domain of a discrete group on the Lobacevskii plane; A.M.S. Transl. Trudy 357-386 (1967) · Zbl 0201.41601
[3] Hejhal, D.A.: The Selberg trace formula and the Riemann zeta function; Duke Math. J.43, 441-482, 1976 · Zbl 0346.10010
[4] Kubota, T.: Elementary theory of Eisenstein series; New York: Halsted Press 1973 · Zbl 0268.10012
[5] Lang, S.:SL 2(R);Reading (Mass.): Addison-Wesley 1975
[6] Lehner, J.: Discontinuous groups and automorphic functions; A.M.S., Providence (R.I.), 1964 · Zbl 0178.42902
[7] Maass, H.: Lectures on modular functions of one complex variable; Bombay: Tata Inst. of Fund. Research 1964 · Zbl 0254.10018
[8] Neunhöffer, H.: Über die analytische Fortsetzung von Poincaréreihen; Sitzungsb. der Heidelberger Ak. der Wiss., Mathematisch-naturwiss. Klasse, 2. Abhandlung 1973
[9] Niebur, D.: A class of nonanalytic automorphic functions; Nagoya Math. J.52, 133-145 (1973) · Zbl 0288.10010
[10] Petersson, H.: Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math.58, 169-215 (1932) · Zbl 0003.35002
[11] Salié, H.: Über die Kloostermanschen SummenS(u, v; q); Math. Z.34, 91-109 (1931) · JFM 57.0211.01
[12] Satake, I.: Spherical Functions and Ramanujan Conjecture; Proc. Symp. Pure Math. IX, A.M.S., Providence (R.I.), p. 258-264, 1966 · Zbl 0202.41102
[13] Titchmarsh, E.C.: The theory of the Riemann zeta function; Oxford: Clarendon Press 1951 · Zbl 0042.07901
[14] Watson, G.N.: A treatise on the theory of Bessel functions; Cambridge: University Press, 1966 (second edition) · Zbl 0174.36202
[15] Weil, A.: On some exponential sums; Proc. Nat. Acad. Sci. U.S.A.34, 204-207 (1948) · Zbl 0032.26102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.