×

zbMATH — the first resource for mathematics

Newton polyhedra and estimation of oscillating integrals. (English. Russian original) Zbl 0351.32011
Funct. Anal. Appl. 10, 175-196 (1977); translation from Funkts. Anal. Prilozh. 10, No. 3, 13-38 (1976).

MSC:
32Sxx Complex singularities
32B10 Germs of analytic sets, local parametrization
52Bxx Polytopes and polyhedra
57R70 Critical points and critical submanifolds in differential topology
26E10 \(C^\infty\)-functions, quasi-analytic functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. Malgrange, ”Intégrales asymptotiques et monodromie,” Ann. Scient. Ecole Norm. Supér., Ser.,4, 7, No. 3, 405-430 (1974). · Zbl 0305.32008
[2] H. Hironaka, ”Resolution of singularities of an algebraic variety over a field of characteristic zero,” Ann. Math.,79 (1964). · Zbl 0122.38603
[3] V. I. Arnol’d, ”Remarks about the stationary-phase method and Coxeter numbers,” Usp. Matem. Nauk,28, No. 5, 17-44 (1973).
[4] I. N. Bernshtein and S. I. Gel’fand, ”Meromorphic property of the function P ? ,” Funktsional’. Analiz Ego Prilozhen.,3, No. 1, 84-86 (1969).
[5] M. F. Atiyah, ”Resolution of singularities and division of distributions,” Comm. Pure Appl. Math.,23, No. 2, 145-150 (1970). · Zbl 0188.19405
[6] I. M. Gel’fand and G. E. Shilov, Generalized Functions and Operations over Them [in Russian], No. 1, Fizmatgiz, Moscow (1959). · Zbl 0091.11102
[7] P. Jeanquartier, ”Development asymptotique de la distribution de Dirac,” C. R. Acad. Science, Paris,271, 1159-1161 (1970). · Zbl 0201.16502
[8] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, ”Toroidal embeddings,” Lecture Notes in Math., Vol. 339, Springer-Verlag (1973).
[9] Lê Dung Trang and C. P. Ramanujam, ”The invariance of Milnor’s number implies the invariance of the topological type,” Preprint, École Polytechnique, Parid (1973).
[10] O. Zariski, ”Contributions to the problem of equisingularities,” C. I. M. E., Varenna (1969) (Edizioni Cremonese Roma (1970)). · Zbl 0177.49001
[11] A. G. Kushnirenko, ”Newton polyhedron and Milnor numbers,” Funktsional’. Analiz Ego Prilozhen.,9, No. 1, 74-75 (1975). · Zbl 0328.32008
[12] O. Zariski, ”Studies in equisingularity,” I, Amer. J. Math.,87, 507-536 (1965). · Zbl 0132.41601
[13] D. N. Bernshtein, ”The number of roots of a system of equations,” Funktsional’. Analiz Ego Prilozhen.,9, No. 3, 1-4 (1975). · Zbl 0395.60076
[14] O. Zariski, ”Studies in equisingularity,” II, Amer. J. Math.,87, 972-1006 (1965). · Zbl 0146.42502
[15] H. Hironaka, Course on Singularities, C. I. M. E., Bressanone, June (1974).
[16] V. I. Arnol’d, ”Critical points of smooth functions and their normal forms,” Usp. Matem. Nauk,30, No. 5, 3-65 (1975).
[17] V. I. Arnol’d, ”Normal forms of functions near degenerate critical points, the Weyl groups of Ak, Dk, Ek, and Lagrangian singularities,” Funktsional’. Analiz Ego Prilozhen.,6, No. 4, 3-25 (1972).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.