×

Asymptotic decay of the solution of a second-order elliptic equation in an unbounded domain. Applications to the spectral properties of a Hamiltonian. (English) Zbl 0351.35009


MSC:

35B40 Asymptotic behavior of solutions to PDEs
35J25 Boundary value problems for second-order elliptic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.2307/2372819 · Zbl 0080.30302
[2] DOI: 10.1007/BF02760233 · Zbl 0246.35025
[3] Aronszajn, J. Math. Pures Appl. 36 pp 235– (1957)
[4] DOI: 10.1007/BF02795485 · Zbl 0211.40703
[5] Zerner, Séminaire Schwartz (1960)
[6] Weinstein, Methods of intermediate problem for eigenvalues (1972)
[7] Trèves, Ada Math. 101 pp 1– (1959)
[8] DOI: 10.2307/1970847 · Zbl 0252.47009
[9] Simon, Princeton Series in Physics (1971)
[10] Schechter, Spectra of partial differential operators (1971) · Zbl 0225.35001
[11] Lions, Problèmes aux limites non homogènes et applications (1970)
[12] DOI: 10.1070/RM1963v018n01ABEH004124 · Zbl 0125.05802
[13] Kato, Perturbation theory for linear operators (1966) · Zbl 0148.12601
[14] DOI: 10.1016/0022-247X(66)90188-0 · Zbl 0161.05803
[15] Dieudonne, Calcul infinitésimal (1968)
[16] Courrège, Astérisque 22–23 (1975)
[17] Bell, Philos. Mag. 35 pp 582– (1944)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.