Medveď, Milan Generic bifurcations of second order ordinary differential equations on differentiable manifolds. (English) Zbl 0351.58007 Math. Slovaca 27, 9-24 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 37C75 Stability theory for smooth dynamical systems 34C40 Ordinary differential equations and systems on manifolds 34D30 Structural stability and analogous concepts of solutions to ordinary differential equations 58C25 Differentiable maps on manifolds PDF BibTeX XML Cite \textit{M. Medveď}, Math. Slovaca 27, 9--24 (1977; Zbl 0351.58007) Full Text: EuDML References: [1] ABRAHAM R., ROBBIN J.: Transversal mappings and flows. 1. New York 1967 · Zbl 0171.44404 [2] АНДРОНОВ А. А., ЛЄОНТОВИЧ Є. А., ГОРДОН Й. Й, МАЙЄР А. Г.: Тєория бифуркации динамичєских систем на плоскости. Москва 1967. [3] АРНОЛЬД Б. И.: Лєкции о бифуркациях и вєрсальных сємєйствах. YMH 27, 5, 1972, 119-184. [4] BRUNOVSKÝ P.: On one-parameter families of diffeomorphisms II. Commentationnes mathematicae Universita Carolinae, 12, 1971, 765-784. [5] GOLUBITSKY M., GUILLEMIN V.: Stable mappings and their singularities. New York 1973. · Zbl 0294.58004 [6] MEDVEĎ M.: Generic properties of parametrized vectorfields I. Czechoslovak Math. J., 25, 1975, 376-388. · Zbl 0328.58013 [7] MEDVEĎ M.: Generic properties of parametrized vectorfields II. Czechoslovak Math. J., 26, 1976, 71-83. · Zbl 0342.58022 [8] SHAHSHAHANI S.: Second order ordinary differential equations on differentiable manifolds. Global Analysis: Proc. Symp. Pure Math. 14, Amer. Math. Soc. Providence, Rhode Island 1970. · Zbl 0212.29101 [9] SOTOMAYOR J.: Generic bifurcations of dynamical systems. Dynamical Systems, Proc. Symp. Univ. Bahia. Salvador 1973. · Zbl 0296.58007 [10] THOM R., LEVINE H.: Singularities of differentiable mappings. Russian translation. Moscow 1968. [11] WHITNEY H.: Elementary structure of real algebraic varietes. Ann. Math., 66, 1957, 545-556. · Zbl 0078.13403 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.