×

zbMATH — the first resource for mathematics

’Jede’ endliche freie Auflösung ist freie Auflösung eines von drei Elementen erzeugten Ideals. (German) Zbl 0329.13010

MSC:
13D05 Homological dimension and commutative rings
13C10 Projective and free modules and ideals in commutative rings
13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
13E05 Commutative Noetherian rings and modules
Software:
Bruns
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Auslander, M; Bridger, M, Stable module theory, Mem. amer. math. soc., 94, (1969) · Zbl 0204.36402
[2] Bourbaki, N, Algèbre commutative, (1965), Diviseurs, Hermann Paris, Chap. VII · Zbl 0141.03501
[3] Buchsbaum, D.A; Eisenbud, D, Some structure theorems for finite free resolutions, Advances in math., 12, 84-139, (1974) · Zbl 0297.13014
[4] Burch, L, A note on the homology of ideals generated by three elements in local rings, (), 949-952 · Zbl 0172.32301
[5] Eisenbud, D; Evans, E.G, Generating modules efficiently, theorems from algebraic K-theory, J. algebra, 27, 278-305, (1973) · Zbl 0286.13012
[6] Ischebeck, F, Eine dualität zwischen den funktoren ext und tor, J. algebra, 11, 510-531, (1969) · Zbl 0191.01306
[7] Kohn, P, Ideals generated by three elements, (), 53-58 · Zbl 0218.13017
[8] MacRae, R.E, On an application of the Fitting invariants, J. algebra, 2, 153-169, (1965) · Zbl 0196.31003
[9] Scheja, G; Storch, U, Differentielle eigenschaften der lokalisierungen analytischer algebren, Math. ann., 197, 137-170, (1972) · Zbl 0223.14002
[10] Vetter, U, Zu einem satz von G. trautmann über den rang gewisser kohärenter analytischer moduln, Arch. math., XXIV, 158-161, (1973) · Zbl 0257.13009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.