On the desingularization of the unipotent variety. (English) Zbl 0352.20035


20G15 Linear algebraic groups over arbitrary fields
14M15 Grassmannians, Schubert varieties, flag manifolds
Full Text: DOI EuDML


[1] Bala, P., Carter, R. W.: Classes of unipotent elements of simple algebraic groups. To appear. · Zbl 0364.22006
[2] Benard, M.: On the Schur indices of characters of the exceptional Weyl groups. Ann. of Math.94, 89-107 (1971) · doi:10.2307/1970736
[3] Borel, A.: Linear algebraic groups, New York: Benjamin 1969 · Zbl 0206.49801
[4] Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S.27, 55-150 (1965) · Zbl 0145.17402
[5] Brieskorn, E.: Singular elements of semi-simple algebraic groups. Proc. Int. Congress Math., Nice (1970) · Zbl 0223.22012
[6] Dynkin, E. B.: Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Translations6 (2), 111-244 (1957) · Zbl 0077.03404
[7] Elkington, G. B.: Centralizers of unipotent elements in semisimple algebraic groups. J. Algebra23, 137-163, (1972) · Zbl 0247.20053 · doi:10.1016/0021-8693(72)90052-X
[8] Frobenius, G., Schur, I.: Über die reellen Darstellungen der endlichen Gruppen. Sitzgsber. preuss. Akad. Wiss. 186-208 (1906) · JFM 37.0161.01
[9] Konstant, B.: The principal three-dimensional. Amer. J. Math.81, 973-1032 (1959) · Zbl 0099.25603 · doi:10.2307/2372999
[10] Richardson, R. W.: Conjugacy classes in Lie algebras and algebraic groups Ann. of Math.86, 1-15 (1967) · Zbl 0153.04501 · doi:10.2307/1970359
[11] Richardson, R. W.: Conjugacy classes in parabolic subgroups of semisimple algebraic groups. Bull. London Math. Soc.6, 21-24 (1974) · Zbl 0287.20036 · doi:10.1112/blms/6.1.21
[12] Robinson, G. de B.: Representation theory of the symmetric group. University of Toronto Press 1961 · Zbl 0102.02002
[13] Springer, T. A.: The unipotent variety of a semisimple group. Proc. Colloq. Alg. Geom. Tata Institute 373-391 (1969) · Zbl 0195.50803
[14] Springer, T. A.: Trigonometric sums. Green functions on finite groups and representations of Weyl groups. To appear · Zbl 0374.20054
[15] Springer, T. A., Steinberg, R.: Conjugacy classes. Lecture Notes in Math. 131 part E. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0249.20024
[16] Steinberg, R.: Regular elements of semisimple algebraic groups. Publ. Math. I.H.E.S.25, 49-80 (1965) · Zbl 0136.30002
[17] Steinberg, R.: Conjugacy classes in algebraic groups. Lecture Notes in Math. 366. Berlin-Heidelberg-New York: Springer 1974 · Zbl 0281.20037
[18] Vargas, J.: Fixed points under the action of unipotent elements. Ph. D. thesis, U.C.L.A. (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.